Breeding Common Bean for Improved Quantity and Quality of Seed Protein

  • F. A. Bliss
  • John W. S. Brown


The common bean (Phaseolis vulgaris L.), which is native to the Western Hemisphere, is an important dietary component for many people worldwide. It is a major source of protein in the Americas and in parts of Asia and Africa where animal products are either scarce or too expensive for widespread consumption. Despite its present extensive cultivation, it could contribute more to the world’s food reserves. Grain yields remain low, nitrogen fixation is low and variable, and seed protein nutritional qualities are less than optimum for man and other animals. If the potential of the common bean is to be fully realized, improvements in these characteristics must be made.


Common Bean Seed Yield Seed Protein Plant Introduction Recurrent Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. ADAMS, M.W. 1975. On the quest for quality in the field bean. p. 143–149. In: M. Milner (ed.) Nutritional improvement of food legumes by breeding. Wiley, New York.Google Scholar
  2. ALLAN, D. and M.J. CRUMPTON. 1971. Fractionation of Phaseolus vulgaris by Polyacrylamide gel electrophoresis in sodium dodecyl sulphate. Bio-chem. Biophys. Res. Commun. 44:1143–1148.Google Scholar
  3. ALLEN, L.W., R.H. SVENSON and S. YACHNIN. 1969. Purification of mitogenic proteins derived from Phaseolus vulgaris: Isolation of potent and weak phytohaemagglutinins possessing mitogenic activity. Proc. Nat. Acad. Sci. (USA) 63:334–341.Google Scholar
  4. ALLARD, R.W. 1960. Principles of Plant Breeding. Wiley and Sons, New York.Google Scholar
  5. ANDREWS, A.T. 1974. Navy (Haricot) bean (Phaseolus vulgaris) lectin-iso-lation and characterization of two components from a toxic agglutinating extract. Biochem. J. 139:421–429.Google Scholar
  6. ANDREWS, A.T. and D.J. JAYNE-WILLIAMS. 1974. The identification of a phytohaemagglutinin in raw navy beans (Phaseolus vulgaris) toxic for Japanese quail (Coturnix coturnix japonica). Brit. J. Nutr. 32:181–188.Google Scholar
  7. ANTUNES, P.L. and V.C. SGARBIERI. 1980. Effect of heat treatment on the toxicity and nutritive value of dry bean (Phaseolus vulgaris var. Rosinha G2) proteins. J. Agr. Food Chem. 28:935–938.Google Scholar
  8. AUTRAN, J.C. and A. BOURDET. 1975. L’identification des varietes de ble: establissement d’un tableau general de determination fonde sur le diagramme electrophoretique des gliadines du grain. Ann. Amelior. Plantes 25:277–301.Google Scholar
  9. AXELSON, N.H., J. KROLL and B. WEEKE. 1973. A manual of Immunoelectrophoresis. Scand. J. Immunol. 2 (Supplement 1).Google Scholar
  10. AXTELL, J.D., D. MOHAN and D.P. CUMMINGS. 1974. Genetic improvement of biological efficiency and protein quality in sorghum. Proc. 29th Corn Sorghum Res. Conf. ASTA, Washington, D.C., pp. 29–39.Google Scholar
  11. BAILEY, T.B. and R.E. COMSTOCK. 1976. Linkage and the synthesis of better genotypes in self-fertilizing species. Crop Sci. 16:363–370.Google Scholar
  12. BAJAJ, S., O. MICKELSON, H.A. LILLEVIK, L. R. BAKER, W.G. BERGEN and J.L. GILL. 1971. Prediction of protein efficiency ratio of peas from their albumin content. Crop Sci. 11:813–815.Google Scholar
  13. BALDI, G. and F. SALAMINI. 1973. Variability of essential amino acid content in seeds of 22 Phaseolus species. Theor. Appl. Genet. 43:75–78.Google Scholar
  14. BAUMGARTNER, B., K.T. TOKUYASU and M.J. CHRISPEELS. 1980. Im-munocytochemical localization of reserve protein in the endoplasmic reticulum of developing bean (Phaseolus vulgaris) cotyledons. Planta 150:419–425.Google Scholar
  15. BLISS, F.A. 1980. Breeding legumes for nutritional quality, pp. 179–185. In: R.J. Summerfield and A.H. Bunting (eds.) Advances in Legume Science. Royal Botanic Gardens, Kew.Google Scholar
  16. BLISS, F.A. 1981. Utilization of vegetable germplasm. HortScience 16: 129–132.Google Scholar
  17. BLISS, F.A. and C.E. GATES. 1968. Directional selection in simulated populations of self-pollinated plants. Austral. J. Biol. Sci. 21:705–719.Google Scholar
  18. BOLLINI, R. and M.J. CHRISPEELS. 1978. Characterisation and subcellular localisation of vicilin and phytohaemagglutinin, the two major reserve proteins of Phaseolus vulgaris L. Planta 142:291–298.Google Scholar
  19. BOLLINI, R. and M.J. CHRISPEELS. 1979. The rough endoplasmic reticulum as the site of reserve-protein synthesis in developing Phaseolus vulgaris cotyledons. Planta 146:487–501.Google Scholar
  20. BOND, D.A. 1976. In vitro digestibility of the testa in tannin-free field beans (Vicia faba L.). J. Agr. Sci., Camb. 86:561–566.Google Scholar
  21. BRIM, C.A. and J.W. BURTON. 1979. Recurrent selection in soybeans. II Selection for increased percent protein in seeds. Crop Sci. 19:494–498.Google Scholar
  22. BRIM, C.A. and J.W. BURTON. 1973. Application of genetic male sterility to recurrent selection schemes in soybeans. Crop Sci. 13:528–530.Google Scholar
  23. BRESSANI, R. 1975. Legumes in human diets and how they might be improved, p. 15–42. In: M. Milner (ed.) Nutritional improvement of food legumes by breeding. Wiley, New York.Google Scholar
  24. BROWN, J.W.S., Y. MA, F.A. BLISS and T.C. HALL. 1981a. Genetic variation in the subunits of globulin-1 storage protein of French bean. Theoret. Appl. Gen. 59:83–88.Google Scholar
  25. BROWN, J.W.S., T.C. OSBORN, F.A. BLISS and T.C. HALL. 1981b. Genetic variation in the subunits of the globulin-2 and albumin seed proteins of French bean. Theoret. Appl. Gen. 60:245–251.Google Scholar
  26. BROWN, J.W.S., F.A. BLISS and T.C. HALL. 1981c. Linkage relationships between genes controlling seed proteins in French bean. Theoret. Appl. Genet. 60:251–259.Google Scholar
  27. BROWN, J.W.S., T.C. OSBORN, F.A. BLISS and T.C. HALL. 1982. Bean lectins: Relationships between agglutinating activity and electrophoretic variation in the lectin-containing G2/albumin seed proteins of French bean (Phaseolus vulgaris L.). Theoret. Appl. Genet. 62:263–271.Google Scholar
  28. BRUCHER, O. 1968. Absence of phytohaemagglutinin in wild and cultivated beans from South America. Proc. Trop. Region Amer. Soc. Hort. Sci. 12:68–85.Google Scholar
  29. BUCHBINDER, B.U. 1980. Polysomal and messenger RNA directed in vitro synthesis and processing of phaseolin, the Gl seed storage protein of Phaseolus vulgaris L. PhD Thesis, University of Wisconsin, Madison.Google Scholar
  30. BURTON, J.W. and C.A. BRIM. 1981. Recurrent selection in soybeans. III. Selection for increased percent oil in seeds. Crop Sci. 21:31–34.Google Scholar
  31. BYRNE, I. and D.C. RASMUSSEN. 1974. Recurrent selection for mineral content in wheat and barley. Euphytica 23:241–249.Google Scholar
  32. CARPENTER, K.J. 1970. Nutritional considerations in attempts to change the chemical composition of crops. Proc. Nutr. Soc. 29:3–12.Google Scholar
  33. CASEY, R. 1979a. Immunoaffinity chromatography as a means of purifying legumin from Pisum (pea) seeds. Biochem. J. 177:509–520.Google Scholar
  34. CASEY, R. 1979b. Genetic variability in the structure of the α-subunits of legumin from Pisum—A two-dimensional electrophoresis study. Heredity 43:265–272.Google Scholar
  35. CATSIMPOOLAS, N., J. WAIRG and T. BERG. 1971. Spectroscopic studies on the conformation of native and denaturd glycinin. Intern. J. Protein Res. 3:277–284.Google Scholar
  36. CROCOMO, O.J, A. TULMAN NETO, S. BLIXT and K. MIKAELSEN. 1976. Breeding for protein in the bean (Phaseolus vulgaris L.): I. Inventory of some Brazilian varieties and a number of lines of differing origin, p. 197–208. In: Evaluation of seed protein alterations by mutation breeding. proc. 3rd Research Coordination Meeting. IAEA, Vienna.Google Scholar
  37. CROY, R.R.D., C. DERBYSHIRE, T. G. KRISHNA and D. BOULTER. 1979. Legumin from Pisum sativum and Vicia faba. New Phytol. 83:29–35.Google Scholar
  38. DAVEY, R.A. and W.F. DUDMAN. 1979. The carbohydrate of storage glycoproteins from seeds of Pisum sativum: Characterisation and distribution on component polypeptides. Austral. J. Plant Physiol. 6:435–447.Google Scholar
  39. ERICSON, M.E. and M.J. CHRISPEELS. 1976. The carbohydrate moiety of mung bean vicilin. Austral. J. Plant. Physiol. 3:763–769.Google Scholar
  40. EVANS, A.M. 1975. Genetic improvement of Phaseolus vulgaris, p. 107–115. In: M. Milner (ed.) Nutritional improvement of food legumes by breeding. Wiley, New York.Google Scholar
  41. EVANS, A.M. and H.E. GRIDLEY. 1979. Prospects for the improvement of protein and yield in food legumes. Current Adv. in Plant Sci. 32:1–17.Google Scholar
  42. EVANS, I.M. and D. BOULTER. 1974. Chemical methods suitable for screening for protein content and quality in cowpea(Vigna unguiculata) meals. J. Sci. Food Agr. 25:311–322.Google Scholar
  43. EVANS, I.M., J.E. FORD, L.C. HANNAH and D. BOULTER. 1976. Comparison of chemical and microbiological methods in the estimation of methionine in cowpea (Vigna unguiculata) seeds. Brit. J. Nutr. 36:289–293.Google Scholar
  44. FINLAYSON, A.J. and S.L. MACKENZIE. 1976. A rapid method for methionine determination in plant materials. Analyt. Biochem. 70:397–402.Google Scholar
  45. FORD, J.E. 1962. A microbiological method for assessing the nutritional value of proteins. 2. The measurement of “available” methionine, leucine, isoleucine, arginine, histidine, tryptophan and valine. Brit. J. nutr. 16: 409–425.Google Scholar
  46. FRAME, R., C.T. WHEELER, B.G. BOWES and D.E.S. STEWART-TULL. 1976. The distribution of the protein phaseolin in the intact plant and, cultured tissues of Phaseolus vulgaris L. New Phytologist 77: 25–28.Google Scholar
  47. GATEHOUSE, J.A., R.R.D. CROY and D. BOULTER. 1980. Isoelectric focusing properties and carbohydrate content of pea (Pisum sativum) legumin. Biochem. J. 185:497–503.Google Scholar
  48. GENTRY, H.S. 1969. Origin of the common bean, Phaseolus vulgaris. Econ. Bot. 23:55–69.Google Scholar
  49. GRAHAM, P.H. and J.C. ROSAS. 1977. Growth and development of indeterminate bush and climbing cultivars of Phaseolus vulgaris L. inoculated with Rhizobium J. Agr. Sci., Camb. 88:503–508.Google Scholar
  50. GRIDLEY, H.E. and A.M. EVANS. 1979. Prospects for combining high yield with increased protein productionin Phaseolus vulgaris L. p. 47–58. In: Seed protein improvement on cereals and grain legumes. Vol. II. IAEA, Vienna.Google Scholar
  51. HACKLER, L.R. and M.H. DICKSON. 1973. A comparison of the amino acid and nitrogen content of pods and seeds of beans (Phaseolus vulgaris L.). Search 3:1–6. New York State Agr. Expt. Sta., Geneva, N.Y.Google Scholar
  52. HALL, T.C., R.C. MCLEESTER and F. A. BLISS. 1977a. Equal expression of the maternal and paternal alleles for polypeptide subunits of the major storage protein of the bean Phaseolus vulgaris L. Plant Physiol. 59:1122–1124.Google Scholar
  53. HALL, T.C., F.A. BLISS, D.S. RYAN and S.M. SUN. 1977b. The subunit structure and cell-free synthesis of the major storage protein from bean (Phaseolus vulgaris L.) seed. Colloq. Intern. C.N.R.S. 261:335–343.Google Scholar
  54. HALL, T.C., Y. MA, B.U. BUCHBINDER, J.W. PYNE, S.M. SUN and F.A. BLISS. 1978. Messenger RNA for Gl protein of French bean seeds: Cell-free translation and product characterization. Proc. Nat. Acad. Sci. USA 75: 3196–3200.Google Scholar
  55. HALL, T. C., S.M. SUN, B.U. BUCHBINDER, J.W. PYNE, F.A. BLISS and J.D. KEMP. 1980. Bean seed globulin mRNA: Translation, characterization, and its use as a probe towards genetic engineering of crop plants, p. 259–272. In: C.J. Leaver (ed.) Genome organization and expression in plants. Plenum, New York.Google Scholar
  56. HANNAH, L.C., B.R. RHODES and I.M. EVANS. 1977. Examination and modification of the use of Leuconostor Mesenteriodes for measurements of the sulfur-containing amino acids from Vigna unguiculata. J. Agr. Food. Chem. 25:620–623.Google Scholar
  57. HANUS, F.J., S.L. ALBRECHT, R.M. ZABLOTOWICZ, D.W. EMERICH, S.A. RUSSELL and H.J. EVANS. 1981. Yield and N content of soybean seed as influenced by Rhizobium japonicum inoculants possessing the hydrogenase characteristic. Agron. J. 73:368–372.Google Scholar
  58. HARPER, A.E., P.R. PAYNE and J.C. WATERLOW. 1973. Asessment of human protein needs. Amer. J. Clin. Nutr. 26:1168–1169.Google Scholar
  59. HUEBNER, F.R. and J.S. WALL. 1976. Fractionation and quantitative differences of glutenin from wheat varieties varying in baking quality. Cereal Chem. 53:258–278.Google Scholar
  60. JAFFÉ, W.G. 1969. Hemagglutinins, p. 69–101. In: I.E. Liener (ed.) Toxic constituents of plant foodstuffs. Academic Press, New York.Google Scholar
  61. JAFFÉ, W.G., O. BRUCHER and A. PALOZZO. 1972. Detection of four types of specific phytohaemagglutinins in different lines of beans. Z. Immun.-Forsch. Bd. 142:439–447.Google Scholar
  62. JAFFÉ, W.G., A. LEVY and D.I. GONZALEZ. 1974. Isolation and partial characterisation of bean phytohaemagglutinins. Phytochemistry 13:2685–2693.Google Scholar
  63. JANSEN, G.R. 1977. Factors affecting nutritional value, p. 177–203. In: C.E. Bodwell (ed.) Evaluation of proteins for humans. AVI Publ. Co., Westport, Conn.Google Scholar
  64. KELLY, J.D. and F.A. BLISS. 1975. Heritability estimates of percentage seed protein and available methionine and correlations with yield in dry beans. Crop Sci. 15:753–757.Google Scholar
  65. KELLY, J.F. 1971. Genetic variation in the methionine levels of mature seeds of common bean (Phaseolus vulgaris L.) J. Amer. Soc. Hort. Sci. 96: 561–563.Google Scholar
  66. KELLY, J.F., A. FIRMAN and H.L. ADAMS. 1970. Microbiological methods for the estimation of methionine content of beans. Rpt. Dry Bean Res. Conf., Davis, California. Vol. 10:84–90.Google Scholar
  67. KENWORTHY, W.J. and C.A. BRIM. 1979. Recurrent selection in soybeans. I. Seed yield. Crop Sci. 19:315–318.Google Scholar
  68. KHADR, F.H. and K.J. FREY. 1965. Effectiveness of recurrent selection in oat breeding (Avena sativa L.). Crop Sci. 5:349–354.Google Scholar
  69. KORNFELD, R. and S. KORNFELD. 1976. Comparative aspects of glycoprotein structure. Annu. Rev. Biochem. 45:217–237.Google Scholar
  70. LAURELL, C.B. 1967. Quantitative estimation of proteins by electrophoresis in antibody-containing agarose gel. In: H. Peeters (ed.) Proteins in biological fluids. Elsevier, Amsterdam. 14:499–502.Google Scholar
  71. LAURELL, C.B. 1972. Electroimmunoassay. Scand. J. Clin. Lab. Invest. (Suppl. 2). 124:21–37.Google Scholar
  72. LEAVITT, R.D., R.D. FELSTED and N.R. BACHUR. 1977. Biological and biochemical properties of Phaseolus vulgaris isolectins. J. Biol. Chem. 252:2961–2966.Google Scholar
  73. LELEJI, O.I. 1971. The genetics of crude protein and its relation to physiological and agronomic factors in dry beans. PhD Thesis, Cornell Univ., Ithaca, N.Y.Google Scholar
  74. LELEJI, O.I., M.H. DICKSON and L.R. HACKLER. 1972a. Effect of genotype on microbiologically available methionine content of bean seeds. Hort-Science 7:277–279.Google Scholar
  75. LELEJI, O.I., M.H. DICKSON, L.V. CROWDER and J.B. BOURKE. 1972b. Inheritance of crude protein percentage and its correlation with seed yield in beans, Phaseolus vulgaris L. Crop Sci. 12: 168–171.Google Scholar
  76. LIENER, I.E. and M.L. KAKADE. 1969. Protease inhibitors, p. 8–68. In: I.E. Liener (ed.) Toxic constituents of plant foodstuffs. Academic Press, New York.Google Scholar
  77. LIS, H. and N. SHARON. 1978. Soybean agglutinin—a plant glycoprotein. Structure of the carbohydrate unit. J. Biol. Chem. 253:3468–3476.Google Scholar
  78. MA, Y. 1977. Improvement of nutritive value of dry bean seed (Phaseolus vulgaris L.). PhD Thesis, University of Wisconsin, Madison.Google Scholar
  79. MA, Y. and F.A. BLISS. 1978a. Seed proteins of common bean. Crop Sci. 18:431–437.Google Scholar
  80. MA, Y. and F.A. BLISS. 1978b. Tannin content and inheritance in common bean. Crop Sci. 18:201–209.Google Scholar
  81. MA, Y., F.A. BLISS and T.C. HALL. 1980. Peptide mapping reveals considerable sequence homology between the three polypeptide subunits of Gl storage protein from French bean seed. Plant Physiol. 66:897–902.Google Scholar
  82. MANEN, J.-F. 1978a. Comparaison entre les léctines des graines de quelques Phaseolus: rélations entre le polymorphisme observé, la mise en culture et l’hybridation possible entre espécès. Candollea 33:193–200.Google Scholar
  83. MANEN, J.-F. 1978b. Contribution à la caractérisation et à la biologie des léctines dans la graine de Phaseolus vulgaris L. cv. Contender. Sausserea 9:23–44.Google Scholar
  84. MANEN, J.-F. and M.N. MIÈGE. 1977. Purification et caractérisation des léctines isolées dans les albumines et les globulines de Phaseolus vulgaris L. Physiol. Vég. 15:163–173.Google Scholar
  85. MATTHEWS, J., J.W.S. BROWN and T.C. HALL. 1981. Bean seed protein (phaseolin) mRNA is translated to yield glycosylated polypeptides by Xenopus oocytes. Nature 294:175–176.Google Scholar
  86. MATZINGER, D.F. and E.A. WERNSMAN. 1968. Four cycles of mass selection in a synthetic variety of an autogamous species Nicotiana tabacum L. Crop Sci. 8:239–243.Google Scholar
  87. MATZINGER, D.F. and E.A. WERNSMAN. 1980. Population improvement in self-pollinated crops, p. 191–199. In: F.T. Corbin (ed.) World Soybean Conference II: Proc. Westview Press, Boulder, Colorado.Google Scholar
  88. MATZINGER, D.F., C.C. COCKERHAM and E.A. WERNSMAN. 1976. Single character and index mass selection with random mating in a naturally self-fertilizing species, p. 503–508. In: E. Pollak, O. Kempthorne and T.B. Bailey, Jr. (eds.) Proc. Intern. Conf. Quant. Genet. Iowa State Univ. Press, Ames.Google Scholar
  89. MATZINGER, D.F., E.A. WERNSMAN and C.C. COCKERHAM. 1972. Recurrent family selection and correlated response in Nicotiana tobacum L. I. ‘Dixie Bright 244’ × ‘Coker 139’. Crop Sci. 12:40–43.Google Scholar
  90. MCFERSON, J., F.A. BLISS and J.C. ROSAS. 1982. Selection for enhanced nitrogen fixation in common bean, Phaseolus vulgaris L. In: P. Graham (ed.) Proc. Intern. Workshop in Nitrogen Fixation. CIAT, Cali, Colombia (in press).Google Scholar
  91. MCLEESTER, R.C., T.C. HALL, S.M. SUN and F.A. BLISS. 1973. Comparison of globulin proteins from Phaseolus vulgaris with those of Vicia faba. Phytochemistry 2:85–93.Google Scholar
  92. MECHAM, D.K., D.D. KASARDA and C.O. QUALSET. 1978. Genetic aspects of wheat gliadin proteins. Biochem. Genet. 16:831–853.Google Scholar
  93. MEINERS, J.P. and S.C. LITZENBERGER. 1975. Breeding for nutritional improvement, p. 131–141. In: M. Milner (ed.) Nutritional improvement of food legumes by breeding. Wiley, New York.Google Scholar
  94. MILLER, J.B., C. NOYES, R. HEINRIKSON, H.S. KINGDON and S. YACH-NIN. 1973. Phytohemagglutinin mitogenic proteins. Structural evidence for a family of isomitogenic proteins. J. Expt. Med. 138:939–951.Google Scholar
  95. MILLER, J.B., R. HSU, R. HEINRIKSON and S. YACHNIN. 1975. Extensive homology between the subunits of phytohaemagglutinin mitogenic proteins derived from Phaseolus vulgaris. Proc. Nat. Acad. Sci. USA 72: 1388–1391.Google Scholar
  96. MILLERD, A. 1975. Biochemistry of legume seed proteins. Ann. Rev. Plant Physiol. 26:53–72.Google Scholar
  97. MUNCK, L. 1972. Improvement of nutritional value in cereals. Hereditas 72:1–128.Google Scholar
  98. MUTSCHLER, M.A. 1979. Genetic control of globulin-1 seed protein and its relationship to total protein content and quality in dry bean (Phaseolus vulgaris L.) and male sterility in the dry bean (P. vulgaris) PhD Thesis, University of Wisconsin, Madison.Google Scholar
  99. MUTSCHLER, M.A. and F.A. BLISS. 1981. The inheritance of bean seed globulin content and its relationship to protein content and quality. Crop Sci. 21:289–294.Google Scholar
  100. MUTSCHLER, M.A., F.A. BLISS and T.C. HALL. 1980. Variation in the accumulation of seed storage protein among genotypes of Phaseolus vulgaris L. Plant Physiol. 65:627–630.Google Scholar
  101. NELSON, O.E. 1969. Genetic modification of protein quality in plants. Adv. Agron. 21:171–194.Google Scholar
  102. OH, Y.H. and R.A. CONARD. 1972. Further studies on mitogenic components of Phaseolus vulgaris phytohaemagglutinin: Subunit structure. Arch. Biochem. Biophys. 152:631–637.Google Scholar
  103. OPIK, H. 1968. Development of cotyledon cell structure in ripening Phaseolus vulgaris seeds. J. Exp. Bot. 19:64–76.Google Scholar
  104. ORF, J.H. and T. HYMOWITZ. 1979. Inheritance of the absence of the Kunitz trypsin inhibitor in seed protein of soybeans. Crop Sci. 19:107–109.Google Scholar
  105. ORETGA D.M.L., C. RODRIGUEZ and E. HERNANDEZX. 1976. Analisis quimico de 68 genotipos del Genero Phaseolus cultivados en Mexico. Agrociencia 24:23–42.Google Scholar
  106. OSBORNE, T.B. 1894. The proteins of the kidney bean. J. Amer. Chem. Soc. 16:703–712.Google Scholar
  107. OSBORNE, T.B. and I.F. HARRIS. 1903. The specific rotation of some vegetable proteins. J. Amer. Chem. Soc. 25:842–848.Google Scholar
  108. PALMER, R., A. MCINTOSH and A. PUSZTAI. 1973. The nutritional evaluation of kidney beans (Phaseolus vulgaris). The effect of nutritional value of seed germination and changes in trypsin inhibitor content. J. Sci. Food Agr. 24:937–944.Google Scholar
  109. PAUL, C. 1977. GLC method for determination of methionine after cyanogen bromide reaction and its use in mass screening of flela beans (Vicia fava L.). Z. Pflanzenzuchtg. 78:97–112.Google Scholar
  110. PAYNE, P.R. 1975. Safe protein-calorie ratios in diets. The relative importance of protein and energy intake as causal factors in malnutrition. Amer. J. Clin. Nutr. 28:281–286.Google Scholar
  111. PORTER, W.M. 1972. Genetic control of protein and sulfur contents in dry bean, Phaseolus vulgaris L. PhD Thesis, Purdue Univ., Lafayette, Ind.Google Scholar
  112. PUSZTAI, A. and W.B. WATT. 1970. Glycoprotein II. The isolation and characterization of a major antigenic and non-hemagglutinating glycoprotein form Phaseolus vulgaris. Biochim. Biophys. Acta. 207:413–431.Google Scholar
  113. PUSZTAI, A. and W.B. WATT. 1974. Isolectins of Phaseolus vulgaris: A comprehensive study of fractionation. Biochim. Biophys. Acta. 365:57–71.Google Scholar
  114. PUSZTAI, A., E.M.W. CLARKE and T.P. KING. 1979b. The nutritional toxicity of Phaseolus vulgaris lectins. Proc. Nutr. Soc. 38:115–120.Google Scholar
  115. PUSZTAI, A., E.M.W. CLARKE, T.P. KING and J.C. STEWART. 1979a. Nutritional evaluation of kidney bean (Phaseolus vulgaris): Chemical composition, lectin content, and nutritional value of selected cultivars. J. Sci. Food Agr. 30:843–848.Google Scholar
  116. RACKIS, J.J. 1965. Physiological properties of soybean trypsin inhibitors and their relationships to pancreatic hypertrophy and growth inhibition of rats. Fed. Proc. Fed. Amer. Soc. Expt. Biol. 24:1488–1497.Google Scholar
  117. RACKIS, J.J. and R.L. ANDERSON. 1964. Isolation of four soybean trypsin inhibitors by DEAE-cellulose chromatography. Biochem. Biophys. Res. Commun. 15:230–235.Google Scholar
  118. RACKIS, J.J., H.A. SASAME, K.K. MANN, R.L. ANDERSON and A.K. SMITH. 1962. Soybean trypsin inhibitors: Isolation, purification and physical properties. Arch. Biochem. Biophys. 98: 471–478.Google Scholar
  119. REDDY, B.V.S. and R.E. COMSTOCK. 1976. Simulation of the backcross breeding method. I. Effects of heritability and gene number on fixation of desired alleles. Crop. Sci. 16:825–830.Google Scholar
  120. RIGHETTI, P.G., E. GIANAZZA, A. VIOTTI and C. SOAVE. 1977. Heterogeneity of storage proteins in maize. Planta 136:115–123.Google Scholar
  121. RINKE, E.H. 1960. Reaching for yield. Proc. 15th Annu. Hybrid Corn Industry-Research Conf. p. 61–67.Google Scholar
  122. ROMERO, J., S.M. SUN, R.C. MCLEESTER, F.A. BLISS and T.C. HALL. 1975. Heritable variation in a polypeptide subunit of the major storage protein of the bean (Phaseolus vulgaris L.). Plant Physiol 56:776–779.Google Scholar
  123. RONNENKAMP, R.R. 1977. The effects of tannins on nutritional quality of dry beans. PhD Thesis, Purdue Univ., West Lafayette, Ind.Google Scholar
  124. RUTGER, J.N. 1970. Variation in protein content and its relation to other characters in beans (Phaseolus vulgaris L.). p. 59–69. In: Rpt. 10th Dry-Bean Res. Conf., Davis, Calif.Google Scholar
  125. SAMONDS, K.W. and D.M. HEGSTED. 1977. Animal bioassays: A critical evaluation with specific reference to assessing nutritive value for the human, p. 68–80. In: C.E Bodwell (ed.) Evaluation of proteins for humans. AVI Publ. Co., Westport, Conn.Google Scholar
  126. SELA, B.A., H. LIS, N. SHARON and L. SACHS. 1973, Isolectins from wax bean with differential agglutination of normal and transformed mammalian cells. Biochem. Biophys. Acta. 310:273–277.Google Scholar
  127. SILBERNAGEL, M.J. 1970. Bean protein improvement work by USDA— Bean and Pea Investigations. p. 70–83. In: Rpt. 10th Dry Bean Res. Conf. Davis, Calif.Google Scholar
  128. SHEWRY, P.R., H.M. PRATT and B.J. MIFLIN. 1978. Varietal identification of single seeds of barley by analysis of hordein polypeptides. J. Sci. Food Agr. 29:587–596.Google Scholar
  129. SULLIVAN, J.G. 1981. Recurrent selection for increased seed yield and percentage seed protein in the common bean (Phaseolus vulgaris L.) using a selection index; and isolation and analysis of major genes controlling phase-olin. PhD Thesis, Univ. Wisconsin, Madison.Google Scholar
  130. SUN, S.M. and T.C. HALL. 1975. Solubility characteristics of globulins from Phaseolus seeds in regard to their isolation and characterization. J. Agr. Food Chem. 23:184–189.Google Scholar
  131. SUN, S.M., J.L. SLIGHTOM and T. C. HALL. 1981. Intervening sequences in a plant genome—comparison of the partial sequence of cDNA and genomic DNA of French bean phaseolin. Nature 289:37–41.Google Scholar
  132. SUN, S.M., R.C. MCLEESTER, F.A. BLISS and T.C. HALL. 1974. Reversible and irreversible dissociation of globulins from Phaseolus vulgaris seed. J. Biol. Chem. 249:2118–2120.Google Scholar
  133. SUN, S.M., M.A. MUTSCHLER, F.A. BLISS and T.C. HALL. 1978. Protein synthesis and accumulation in bean cotyledons during growth. Plant Physiol. 61:918–929.Google Scholar
  134. TAKAHASHI, T., P. RAMACHANDRAMURTHY and I.E. LIENER. 1967. Some physical and chemical properties of a phytohemagglutinin isolated from Phaseolus vulgaris. Biochim. Biophys. Acta 133:123–133.Google Scholar
  135. TANDON, O.B., R. BRESSANI, N.S. SCHRIMSHAW and F. LEBEAU. 1957. Nutrients in Central American beans. J. Agr. Food Chem. 5:137–142.Google Scholar
  136. THANH, V.H. and K. SHIBASAKI. 1978. Major proteins of soybean seeds. Subunit structure of β-conglycinin. J. Agr. Food. Chem. 26:692–695.Google Scholar
  137. TOLLA, G.E. 1978. Effect of post-bloom nutrient applications and recurrent selection on seed yield and seed protein in common bean (Phaseolus vulgaris L). PhD Thesis, Univ. Wisconsin, Madison.Google Scholar
  138. WEBER, T.M., H. ARO and C.T. NORDMAN. 1972. Characterisation of lymphocyte-stimulating blood cell-agglutinating glycoproteins from red kidney beans (Phaseolus vulgaris). Biochim. Biophys. Acta. 263:94–105.Google Scholar
  139. WEHRHAHN, C. and R.W. ALLARD. 1965. The detection and measurement of the effects of individual genes involved in the inheritance of a quantitative character in wheat. Genetics 51:109–119.Google Scholar
  140. WESTERMAN, D.T. and J.J. KOLAR. 1978. Symbiotic N2 (C2H2) fixation by bean. Crop Sci. 18:986–990.Google Scholar
  141. WRIGHT, D.J. and D.K. BOULTER. 1974. Purification and subunits structure of legumin of Vicia faba L. (Broad bean). Biochem. J. 141:413–418.Google Scholar
  142. WRIGLEY, C.W. and K.W. SHEPHERD. 1973. Electro-focusing of grain proteins from wheat genotypes. Ann. N.Y. Acad. Sci. 209:154–162.Google Scholar
  143. YACHNIN, S. and R.H. SVENSON. 1972. The immunological and physiocochemical properties of mitogenic proteins derived from Phaseolus vulgaris. Immunology 22:871–883.Google Scholar
  144. YOUNG, V.R. and N.S. SCRIMSHAW. 1977. Human protein and amino acid metabolism and requirements in relation to protein quality. p. 11–54. In: C.E. Bodwell (ed.) Evaluation of proteins for humans. AVI Publ. Co., Westport, Conn.Google Scholar

Copyright information

© The AVI Publishing Company, Inc. 1983

Authors and Affiliations

  • F. A. Bliss
    • 1
  • John W. S. Brown
    • 2
  1. 1.Department of HorticultureUniversity of WisconsinMadisonUSA
  2. 2.Agrigenetics Research ParkAgrigenetics CorporationMadisonUSA

Personalised recommendations