Heterogeneity of Polypeptide Hormones during Aging

  • Thomas L. Klug
  • Mark F. Obenrader
  • Richard C. Adelman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 113)


Alterations in the structure of DNA, RNA and protein molecules are a well established biochemical manifestation of aging. These structural changes were originally detected as alterations in physical properties such as stability to heat denaturation or changes in intrinsic biological activity. However, these studies have not progressed to the point where a specific structural alteration of a known type occurring in a macromolecule may be held responsible for the decreased functional capacity characteris- tic of senescence. This latter condition if not surprising in view of (1) the tremendous structural complexity and functional interdependence of DNA, RNA and protein structures, and (2) the difficulty of correlating specific, frequently small, alterations in molecular structure with changes in biological and ultimately physiological activities.


Growth Hormone Altered Protein Biosynthetic Precursor Polypeptide Hormone Heterogeneous Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelman, R.C. (1970). An age-dependent modification of enzyme regulation. J. Biol. Chem. 245, 1032–1035.PubMedGoogle Scholar
  2. Adelman, R.C. (1973). Hormonal regulation of macromolecular synthesis during aging. In: Mechanismes du vieillissement moleculaire et cellulare, pp. 141–152. Paris: Les Colloques de L’ Institut National de la Sante et de la Recherche Medicale.Google Scholar
  3. Adelman, R.C. and Freeman, C. (1972). Age-dependent regulation of glucokinase and tyrosine aminotransferase activities of of rat liver in vivo by adrenal, pancreatic, and pituitary hormones. Endocrinology 90, 1551–1560.PubMedCrossRefGoogle Scholar
  4. Antoniades, H.N. (1975). Conversion of (125I) growth hormone into high molecular weight forms in vivo. Endocrinology 96, 799–802.Google Scholar
  5. Antoniades, H.N. (1976). Metabolism of single-component and high-molecular-weight radioactive insulin in rats. Endocrinology 99, 481–489.PubMedCrossRefGoogle Scholar
  6. Assan, R. and Slusher, N. (1972). Structure/function and structure/ immunoreactivity relationships of the glucagon molecule and related synthetic peptides. Diabetes 21, 843–855.PubMedGoogle Scholar
  7. Berson, S.A. and Yalow, R. (1968). Immunochemical heterogeneity of parathyroid hormone in plasma. J. clin. Endocr. Metab. 28, 1037–1047,PubMedCrossRefGoogle Scholar
  8. Britten, R.J. and Davidson, E.H. (1969). Gene regulation for higher cells: a theory. Science 165, 349–357.PubMedCrossRefGoogle Scholar
  9. Brush, J.S. (1971). Purification and characterization of a protease with specificity for insulin from rat muscle. Diabetes 20, 140–155.Google Scholar
  10. Caplan, A.I. and Ordahl, C.P. (1978). Irreversible gene repression model for control of development. Science 201, 120–130.PubMedCrossRefGoogle Scholar
  11. Chan, S.J., Keim, P. and Steiner, D.F. (1976). Cell-free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc. natn. Acad. Sci. USA 73, 1964–1968.CrossRefGoogle Scholar
  12. Chretien, M. and Li, C.H. (1967). Isolation, purification, and characterization of y-lipotropin hormone from sheep pituitary glands. Can. J. Biochem. 45, 1163–1174.PubMedCrossRefGoogle Scholar
  13. Clark, J.L. and Steiner, D.F. (1969). Insulin biosynthesis in the rat: demonstration of two proinsulins. Proc. natn. Acad. Sci. 62, 278–285.CrossRefGoogle Scholar
  14. Cohen, B.J., Anver, M.R., Ringler, D.H. and Adelman, R.C. (1978). Age-associated pathological changes in the male rat. Fed. Proc. (In press).Google Scholar
  15. Davy, K.M.M., Fawcett, J.S. and Morris, C.J.O.R. (1977). Chemical differences between thyrotropin isohormones. Biochem. J. 167, 279–280.PubMedGoogle Scholar
  16. Diebel, N.D., Yamamoto, M. and Bogdanove, E.M. (1973). Discrepancies between radioimmunoassays and bioassay in rat FSH: Evidence that androgen treatment and withdrawal can alter bioassay-immunoassay ratios. Endocrinology 92, 1065–1078.PubMedCrossRefGoogle Scholar
  17. Eaton, G.M., Brewer, G.J. and Tashian, R.E. (1966). Hexokinase isoenzyme patterns of human erythrocytes and leucocytes. Nature 212, 944–946.CrossRefGoogle Scholar
  18. Erhardt, F.W. and Scriba, P.C. (1977). High molecular thyrotropin (“Big”-TSH) from human pituitaries: preparation and partial characterization. Acta endocr. 85, 698–712.PubMedGoogle Scholar
  19. Faloona, G.R. and Linger, R.H. (1974). Biological and immunological activity of pancreatic glucagon and enteric glucagon-like immunoreactivity. In: Heterogeneity of Polypeptide Hormones, pp. 142–149. Eds. Rabinowitz, D. and Roth, J. Academic Press, New York.Google Scholar
  20. Freeman, C., Karoly, K. and Adelman, R.C. (1973). Impairments in the availability of insulin to liver in vivo and in the binding of insulin to purified hepatic plasma membrane during aging. Biochem. Biophys. Res. Comm. 54, 1573–1580.PubMedCrossRefGoogle Scholar
  21. Friesen, H., Guyda, H. and Hardy, J. (1970). Biosynthesis of human growth hormone and prolactin. J. clin. Endocr. Metab.31, 611–624.PubMedCrossRefGoogle Scholar
  22. Gershon, H. and Gershon, D. (1973). Inactive enzyme molecules in aging mice: liver aldolase. Proc. natn. Acad. Sci. USA 70, 909–913.CrossRefGoogle Scholar
  23. Guidice, L.C. and Pierce, J.G. (1977). Separation of functional and nonfunctional ß subunits of thyrotropin preparations by Polyacrylamide gel electrophoresis. Endocrinology 101, 776–781.CrossRefGoogle Scholar
  24. Gold, G., Karoly, K., Freeman, C and Adelman, R.C. (1976). A possible role for insulin in the altered capability for hepatic enzyme adaptation during aging. Biochem. Biophys. Res. Comm. 73, 1003–1010.PubMedCrossRefGoogle Scholar
  25. Golstein-Golaire, J. and Vanhaelst, L. (1975). Gel filtration profile of circulating immunoreactive thyrotropin and subunits of myxedematous sera. J. clin. Endocr. Metab. 41, 575–580.PubMedCrossRefGoogle Scholar
  26. Holland, J.J., Kohne, D. and Doyle, M.V. (1973). Analysis of viral replication in ageing human fibroblasts cultures. Nature 245, 316–318.PubMedCrossRefGoogle Scholar
  27. Jacob, F. and Monod, J. (1963). Genetic repression, allosteric inhibition, and cellular differentiation. In: Cytodifferen- tiation and Macromolecular Synthesis, pp. 30–64. Ed. Locke, M. Academic Press, New York.CrossRefGoogle Scholar
  28. Kemper, B., Habener, J.F., Mulligan, R.C., Potts, J.T. and Rich, A. (1974). Pre-proparathyroid hormone: a direct translation product of parathyroid messenger RNA. Proc. natn. Acad. Sci. USA 71, 3731–3735.CrossRefGoogle Scholar
  29. Klug, T.L. and Adelman, R.C. (1977). Evidence for a large thyro- tropin and its accumulation during aging in rats. Biochem. Biophys. Res. Comm. 77, 1431–1437.PubMedCrossRefGoogle Scholar
  30. Koida, M., Lai, C.T. and Horecker, B.L. (1969). Subunit structure of rabbit muscle aldolase: extent of homology of α and ß subunits and age-dependent change in their ratio. Arch. Biochem. Biophys. 134, 623–631.CrossRefGoogle Scholar
  31. Lee, G., Aloj, S.M., Beguinot, F. and Kohn, L.D. (1977). Existence of a soluble thyrotropin binding component in normal human sera. J. Biol. Chem. 252, 7967–7970.PubMedGoogle Scholar
  32. Leuschen, M.P. , Tobin, R.B., and Moriarity, C.M. (1978). Enriched populations of rat pituitary thyrotrophs in monolayer culture. Endocrinology 102, 509–518.PubMedCrossRefGoogle Scholar
  33. Lewis, U.J., Dunn, J.T., Bonewald, L.F., Seavey, B.K. and Vanderlaan, W.P. (1978). A naturally occurring structural variant of human growth hormone. J. Biol. Chem. 253, 2679–2687.PubMedGoogle Scholar
  34. Martin, C.M. (1978). Genetic syndromes in man with potential revelance to the pathobiology of aging. In: Genetic Effects on Aging, pp. 5–40. Eds. Bergsma, D. and Harrison, D.E. Alan R. Liss, Inc., New York.Google Scholar
  35. Noe, B.D. and Bauer, C.E. (1971). Evidence for glucagon biosynthe- sis involving a protein intermediate in islets of the angler- fish (Lophius americanus). Endocrinology 89, 642–651.PubMedCrossRefGoogle Scholar
  36. Obenrader, M.F., Auth, J.C., Gold, C., Ceci, L. , Kitahara, A. and Adelman, R.C (1978). Heterogeneity of immunoreactive insulin in aging rats. J. Geront. (submitted).Google Scholar
  37. Orgel, L.E. (1963). The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. natn. Acad. Sci.49, 517–521.CrossRefGoogle Scholar
  38. Papkoff, H., Sairam, M.R. and Li, C.H. (1971). Amino acid sequence of the subunits of ovine pituitary interstitial cell-stimu- lating hormone. J. Am. chem. Soc. 93, 1531–1532.PubMedCrossRefGoogle Scholar
  39. Peckham, W.D., Yamaji, T., Dierschke, D.J. and Knobil, E. (1973). Gonadal function and the biological and physicochemical properties of follicle-stimulating-hormone. Endocrinology, 92, 1660–1666.PubMedCrossRefGoogle Scholar
  40. Permutt, M.A. (1974). Effect of glucose on initiation and elonga- tion rates in isolated rat pancreatic islets. J. Biol. Chem. 249, 2738–2742.PubMedGoogle Scholar
  41. Permutt, M.A. and Routman A. (1977). Proinsulin precursors in isolated rat pancreatic islets. Bioohem. Biophys. Res. Comm. 78, 855–862.CrossRefGoogle Scholar
  42. Permutt, M. , Biesbroeck, J. and Chyn, R. (1977). Characteristics of high molecular weight insulins in insulinoma patients. J. clin. Endocr. Metab. 44, 536–544.PubMedCrossRefGoogle Scholar
  43. Pierce, J.G., Bahl, O.P., Cornell, J.S. and Swaminathan, N. (1971). Biologically active hormones prepared by recombination of the a chain of human chorionic gonadotropin and the hormone- specific chain of bovine thyrotropin or of bovine lutenizing hormone. J. Biol. Chem. 246, 2321–2324.PubMedGoogle Scholar
  44. Pierce, J.G. (1974). Chemistry of thyroid-stimulating hormone. In: Handbook of Physiological Chemistry, pp. 79–103. Eds. Greep, R.O. and Astwood, E.B. Williams and Wilkins, Baltimore.Google Scholar
  45. Prentice, L.G. and Ryan, R. (1975). L.H. and its subunits in human pituitary, serum and urine. J. clin. Endocr. Metab. 40, 303–312PubMedCrossRefGoogle Scholar
  46. Rabinowitz, D. and Roth, J. (1974).(eds.) In: Heterogeneity of Polypeptide Hormones. Academic Press, New York.Google Scholar
  47. Reichert, L.E., Jr. and Ramsey, R.B. (1977). Evidence for the existence of a large molecular weight protein in human pituitary tissue having follicle stimulating hormone activity. J. clin. Endocr. Metab. 44, 545–552.PubMedCrossRefGoogle Scholar
  48. Reiss, E. and Canterbury, J.M. (1974). Emerging concepts of the nature of circulating parathyroid hormones: implications for clinical research, In: Recent Progress in Hormone Research, pp. 391–429. Ed. Greep, R.O. Academic Press. New York.Google Scholar
  49. Rinderknecht, E. Humbel, R.E. (1978). The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J. Biol. Chem. 253, 2769–2776.PubMedGoogle Scholar
  50. Roberts, J.L. and Herbert, E. (1978). Characterization of a common precursor to corticotropin and ß-lipotropin. Proc. natn. Acad. Sci. USA 74, 5300–5304.CrossRefGoogle Scholar
  51. Roos, B.A., Okano, K. and Deftos, L.J. (1974). Evidence for a pro-calcitonin. Biochem. Biophys. Res. Comm. 60, 1134–1140.PubMedCrossRefGoogle Scholar
  52. Rosa, J. and Schapira, J. (1964). Lactic dehydrogenase isozymes and aging of erythrocytes. Nature 204, 883.PubMedCrossRefGoogle Scholar
  53. Rothstein, M. (1975). Aging and the alteration of enzymes: a review. Mech. Aging and Dev. 4, 325–338.CrossRefGoogle Scholar
  54. Rothstein, M. (1977). Recent developments in the age-related alter- ations of enzymes: a review. Mech. Aging and Dev. 6, 241–257.CrossRefGoogle Scholar
  55. Sherwood, L.M., Rodman, J.S. and Lundberg, W.B. (1970). Evidence for a precursor to circulating parathyroid hormone. Proc. natn. Acad. Sci. USA 67, 1631–1638.CrossRefGoogle Scholar
  56. Silverman, R. and Yalow, R.S. (1973). Heterogeneity of parathyroid hormone. J. Clin. Invest. 52, 1958–1971.PubMedCrossRefGoogle Scholar
  57. Skala-Rubinson, H., Vibert, M. and Dreyfus, J.C. (1976). Electro- phoretic modifications of three enzymes in extracts of human and bovine lens: posttranslational “aging” of lens enzymes. Clinica chim Acta 70, 385–390.CrossRefGoogle Scholar
  58. Smith, L.F. (1964). Isolation of insulin from pancreatic extracts using carboxymethyl and diethylaminoethyl celluloses. Biochim. biophys. Acta 82, 231–236.PubMedCrossRefGoogle Scholar
  59. Smith, L.F. (1966). Species variation in the amino acid sequence of insulin. Am. J. Med. 40, 662–666.PubMedCrossRefGoogle Scholar
  60. Snyder, G., Hymer, W.C. and Snyder, J. (1977). Functional hetero- geneity in somatotrophs isolated from rat anterior pituitary gland. Endocrinology 101, 788–799,PubMedCrossRefGoogle Scholar
  61. Steiner, D.F., Clark, J.L., Nolan, C., Rubenstein, A.H., Margoliash, E., Aten, B. and Oyer, P.E. (1969). Proinsulin and the biosynthesis of insulin. In: Recent Progress in Hormone Research, pp. 207–282. Ed. R.O. Greep. Academic Press, New York.Google Scholar
  62. Steiner, D.F., Cunningham, D., Spigelman, L. and Aten, B. (1967). Insulin biosynthesis: evidence for a precursor. Science 157, 697–700.PubMedCrossRefGoogle Scholar
  63. Steiner, D.F., Holland, O., Rubenstein, A., Cho, S. and Bayliss, D. (1968). Isolation and properties of proinsulin, intermediate forms, and other minor components from crystalline bovine insulin. Diabetes 17, 725–736.PubMedGoogle Scholar
  64. Strehler, B.L. (1977). Time, Cells, and Aging, pp. 295–324. Academic Press, New York.Google Scholar
  65. Tompkins, G.A., Stanbridge, E.J. and Hayflick, L. (1974). Viral probes of aging in the human diploid cell strain WI-38. Proc. Soc. exp. Biol. Med. 146, 385–390.Google Scholar
  66. Vaitukaitus, J.L. and Ross, G.T. (1974). Subunits of human glyco- protein hormones, their immunological and biological behavior. In: Heterogeneity of Polypeptide Hormones, pp. 98–106. Eds. Rabinowitz, D. and Roth, J. Academic Press, New York.Google Scholar
  67. Vanhaelst, L. and Golstein-Golaire, J. (1976). Gel filtration profile of immunoreactive thyrotropin and subunits of human pituitaries. J. clin. Endocr. Metab. 43, 836–841.PubMedCrossRefGoogle Scholar
  68. Varandani, P.T. (1974). Insulin degradation VI. Feedback control by insulin of liver glutathione-insulin transhydrogenase in rat. Diabetes 23, 117–125.PubMedGoogle Scholar
  69. Varandani, P.T., Shroyer, L.A. and Nafz, M.A. (1972). Sequential degradation of insulin by rat liver homogenates. Proc. natn. Acad. Sci. USA 69, 1681–1684.CrossRefGoogle Scholar
  70. Yalow, R. (1974). Heterogeneity of peptide hormones, In: Recent Progress in Hormone Research , pp. 597–633. Ed. Greep, R.O. Academic Press, New York.Google Scholar
  71. Yalow, R. and Berson, S.A. (1970). Size and charge distinctions between endogenous human plasma gastrin in peripheral blood and heptadecapeptide gastrins. Gastroenterology 58, 609–615.PubMedGoogle Scholar
  72. Yip, C.C., Hew, C.L. and Hsu, H. (1975). Translation of messenger ribonucleic acid from isolated pancreatic islets and human isulinomas. Proa. natn. Acad. Sci. USA 72, 4777–4779. Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Thomas L. Klug
    • 1
    • 2
  • Mark F. Obenrader
    • 1
    • 2
  • Richard C. Adelman
    • 1
    • 2
  1. 1.Fels Research Institute, Temple University School of MedicineTemple University Institute on AgingPhiladelphiaUSA
  2. 2.Division of Biomedical ResearchPhiladelphia Geriatric CenterPhiladelphiaUSA

Personalised recommendations