Advertisement

Aging and Neurotransmitter Systems

  • P. L. McGeer
  • E. G. McGeer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 113)

Abstract

The aging process is accompanied by substantial alterations in physiological function. Decreased total motor activity, declin- ing mental acuity and altered endocrine performance are among the obvious changes that take place. Within the brain, lipofuscin deposits accumulate and the total weight tends to shrink.

Keywords

Tyrosine Hydroxylase Substantia Nigra Locus Coeruleus AChE Activity Neurotransmitter System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algeri, S.. Bonati. M., Brunello, N. and Ponzio. (1977). Dihydro- pteridine reductase and tyrosine hydroxylase activities in rat brain during development and senescence: a comparative study. Brain Res. 132, 569–574.PubMedCrossRefGoogle Scholar
  2. Bird, E.D. and Iversen, L.L.(1974). Huntington’s chorea: post mortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain 97, 457–472.PubMedCrossRefGoogle Scholar
  3. Bowen, D.M., White, P., Flack, R.H.A., Smith, C.B. and Davison, A. N. (1974). Brain decarboxylase activities as indices of pathological change in senile dementia. Lancet i, 1247–1249.CrossRefGoogle Scholar
  4. Brody, H. (1976). An examination of cerebral cortex and brainstem aging. In: Aging, vol. 3, pp. 177–181. Eds. R.D. Terry and S. Gershon. Raven Press, New York.Google Scholar
  5. Carlsson, A. and Winblad, B. (1976). Influence of age and time interval between death and autopsy on dopamine and 3-meth- oxytyramine levels in human basal ganglia. J. Neural Trans. 38, 271–276.CrossRefGoogle Scholar
  6. Clemens, J.A. and Bennett, D.R. (1977). Do aging changes in the preoptic area contribute to loss of cyclic endocrine func- tion? J. Geront. 32, 19–24.PubMedCrossRefGoogle Scholar
  7. Cote, L.J. and Kremzner, L.T. (1974). Changes in neurotransmitter systems with increasing age in human brain. Trans. Am. Soc. Neurochem. 5, 83.Google Scholar
  8. Coyle, J.T. and Campochiaro, P. (1976). Ontogenesis of dopaminergic- cholinergic interactions in the rat striatum: a neurochemi- cal study. J. Neurochem. 27, 673–678,PubMedCrossRefGoogle Scholar
  9. Davies, P. (1978). Studies on the neurochemistry of central cho- linergic systems in Alzheimer’s disease. In: Alzheimer’s DiseaseSenile Dementia and Related Disorders. Eds. R.D. Terry and R. Katzman, Raven Press, New York.Google Scholar
  10. Davies, P. and Verth, A.H. (1977). Regional distribution of mus- carinic acetylcholine receptor in normal and Alzheimer’s- type dementia brains. Brain Res. 138, 385–392.PubMedCrossRefGoogle Scholar
  11. Epstein, M.H. and Barrows, C.H., Jr. (1969). The effects of age on the activity of glutamic acid decarboxylase in various regions of the brains of rats. J. Geront. 24, 136–139.PubMedCrossRefGoogle Scholar
  12. Finch, C.E. (1973). Catecholamine metabolism in the brains of aging male mice. Brain Res. 52, 261–276.PubMedCrossRefGoogle Scholar
  13. Finch, C.E. (1977). Neuroendocrine and autonomic aspects of aging. In: Handbook of the Biology of Aging, pp. 262–280. Eds. E E. Finch and L. Hayflick, Van Nostrand Reinhold, New York.Google Scholar
  14. Frolkis, V.V., Bezrukov, V.V., Duplenko, Y.K., Shcheguleva, I.V., Shevtchuk, V.G. and Verkhratsky, N.S. (1973). Acetylcholine metabolism and cholinergic regulation of functions in aging. Gerontologia 19, 45–57.PubMedCrossRefGoogle Scholar
  15. Grote, S.S., Moses, S.G., Robins, E., Hudgens, R.W. and Croninger, A.B. (1974). A study of selected catecholamines metabolizing enzymes: A comparison of depressive suicides and alcoholic suicides with controls. J. Neurochem. 23, 791–802.PubMedCrossRefGoogle Scholar
  16. Hattori, T. and McGeer,P.L. (1973). Synaptogenesis in the corpus striatum of infant rats. Expl Neurol. 38, 70–79.CrossRefGoogle Scholar
  17. Hattori, T., Singh, V.K. McGeer, E.G. and McGeer P.L. (1976).Immunohistochemical localization of choline acetyltransferase containing neostriatal neurons and their relationship with dopaminergic synapses. Brain Res. 102, 164–173.PubMedCrossRefGoogle Scholar
  18. Hollander, J. and Barrows, C.H., Jr. (1968). Enzymatic studies in senescent rodent brains. J. Geront. 23, 174–179.PubMedCrossRefGoogle Scholar
  19. Jonec, V. and Finch, C.E. (1975). Aging and dopamine uptake by subcellular fractions of the C57BL/6J male mouse brain. Brain Res. 91, 197–215.PubMedCrossRefGoogle Scholar
  20. Kaur, G. and Kanungo, M.S. (1970). Alterations in glutamate de- hydrogenase of the brains of rats of various ages. Can J. Biochem. 48, 203–206.PubMedGoogle Scholar
  21. Levi-Montalcini, R. and Cohen, S. (1960). Effects of the extract of the mouse submaxillary salivary glands on the sympathetic system of mammals. Ann. N.Y. Acad. Sci. 85, 324–341.PubMedGoogle Scholar
  22. Lloyd, K.G. and Hornykiewicz, O. (1972). Occurrence and distribu- tion of aromatic L-amino acid (L-DOPA) decarboxylase in the human brain. J. Neurochem. 19, 1549–1559.PubMedCrossRefGoogle Scholar
  23. McGeer, E.G., Fibiger, H.C., McGeer, P.L. and Wickson, V. (1971). Aging and brain enzymes. Expl. Geront. 6, 391–396.CrossRefGoogle Scholar
  24. McGeer, E.G., Fibiger, H.C. and Wickson, V. (1971). Differential development of caudate enzymes in neonatal rat. Brain Res. 32, 433–440.PubMedCrossRefGoogle Scholar
  25. McGeer, E.G., Gibson, S., Wada, J.A. and McGeer, P.L. (1967).Distribution of tyrosine hydroxylase activity in adult and developing brain. Can. J. Bioohem. 45, 1943–1952.CrossRefGoogle Scholar
  26. McGeer, E.G. and McGeer, O.L. (1976a). Neurotransmitter metabolism in the aging brain. In: Aging, vol. 3, pp. 389–403. Eds. R.D. Terry and S. Gershon, Raven Press, New York.Google Scholar
  27. McGeer, P.L. and McGeer, E.G. (1976b). Enzymes associated with the metabolism of catecholamines, acetylcholine and GABA in human controls and patients with Parkinson’s disease and Hunting- ton’s chorea. J. Neurochem. 26, 65–76.PubMedGoogle Scholar
  28. McGeer, P.L., McGeer, E.G., Singh, V.K. and Chase, W.H. (1974).Choline acetyltransferase localization in the central nervous system by immunohistochemistry. Brain Res. 81, 373–379.PubMedCrossRefGoogle Scholar
  29. McGeer, P.L., McGeer, E.G. and Suzuki, J.S. (1977). Aging and extrapyramidal function. Archs. Neurol. 34, 33–35.CrossRefGoogle Scholar
  30. McGeer, E.G., Parkinson, J. and McGeer, P.L. (1976). Neonatal enzyme development in the interpeduncular nucleus and sur- rounding ventral tegmentum. Expl. Neurol. 53, 109–114.CrossRefGoogle Scholar
  31. McNamara, M.C., Miller, A.T., Jr., Benignus, V.A. and Davis, J.N. (1977). Age related changes in the effect of electroconvul- sive shock (ECS) on the in vivo hydroxylation of tyrosine and tryptophan in rat brain. Brain Res. 131, 313–320.PubMedCrossRefGoogle Scholar
  32. Meek, J.L., Bertilsson, L. Cheney, D.L., Zsilla, G. and Costa, E. (1977). Aging-induced changes in acetylcholine and serotonin content of discrete brain nuclei. J. Geront. 32, 129–131.CrossRefGoogle Scholar
  33. Miller, A.E., Shaar, C.J. and Riegle, G.D. (1976). Aging effects on hypothalamic dopamine and norepinephrine content in the male rat. Expl. Aging Res. 2, 475–480.CrossRefGoogle Scholar
  34. Perry, E.K., Gibson, P.H., Blessed, G., Perry, R.H. and Tomlinson, B.E. (1977). Neurotransmitter enzyme abnormalities in senile dementia: choline acetyltransferase and glutamic acid de- carboxylase in necropsy brain tissue. J. Neurol. Sci. 34, 247–265.PubMedCrossRefGoogle Scholar
  35. Reis, D.J., Ross, R.A. and Joh, T.H. (1977). Changes in the acti- vity and amounts of enzymes synthesizing catecholamines and acetylcholine in brain, adrenal medulla, and sympathetic ganglia of aged rat and mouse. Brain Res. 136, 465–474.PubMedCrossRefGoogle Scholar
  36. Robinson, D.S. (1975). Changes in monoamine oxidase and monoamines with human development and aging. Fed. Proc. 34, 103–107.PubMedGoogle Scholar
  37. Robinson, D.S., Nies, A., Davis, J.N., Bunney, W.E., Davis, J.M., Colburn, R.W., Bourne, H.R., Shaw, D.M. and Coppen, A.J. (1972). Aging, monoamines and monoamine oxidase levels. Lancet i, 290–291.CrossRefGoogle Scholar
  38. Robinson, D.S., Sourkes, R.L., Nies, A., Harris, L.S., Spector, S., Bartlett, D.L. and Kaye, I.S. (1977). Monoamine metabolism in human brain. Arch. Gen. Psychiat. 34, 89–92.PubMedCrossRefGoogle Scholar
  39. Samorajski, T., and Rolsten, C. (1973). Age and regional differ- ences in the chemical composition of brain of mice, monkeys and humans. In: Progress in Brain Research, vol. 3, pp. 253–265. Ed. D.H. Ford, Elsevier Scientific Publishing Co., Amsterdam-London-New York.Google Scholar
  40. Simpkins, J.W., Mueller, G.P., Huang, H.H. and Meites, J. (1977). Evidence for depressed catecholamine and enhanced serotonin metabolism in aging male rats: possible relation to gonado- tropin secretion. Endocrinology 100, 1672–1678.PubMedCrossRefGoogle Scholar
  41. Spillane, J.A., White, P., Goodhardt, M.J., Flack, R.H.A., Bowen, D.M. and Davison, A.N. (1973). Selective vulnerability of neurons in organic dementia. Nature 266, 558–559.CrossRefGoogle Scholar
  42. Sun, A.Y. (1976). Aging and in vivo norepinephrine-uptake in mammalian brain. Expl. Aging Res. 2, 207–219.CrossRefGoogle Scholar
  43. Tennyson, V.M., Barrett, R.E., Cohen, G., Cote, L., Heikkila, R. and Mytilineou, C. (1973). Correlation of anatomical and biochemical development of the rabbit neostriatum. Prog. Brain Res. 40, 203–217.PubMedCrossRefGoogle Scholar
  44. Verkhratsky, N.S. (1970). Acetylcholine metabolism peculiarities in aging. Expl. Geront. 5, 49–56.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • P. L. McGeer
    • 1
  • E. G. McGeer
    • 1
  1. 1.Kinsmen Laboratory of Neurological Research, Department of PsychiatryUniversity of British ColumbiaVancouverCanada

Personalised recommendations