Cyclic Nucleotides in Neuroendocrine Function

  • Yvonne Clement-Cormier
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 113)


Several antipsychotic agents produce extrapyramidal side effects which resemble Parkinson’s disease (Hollister, 1972; Hornykiewicz, 1973). It is generally agreed that these side effects may arise from the ability of these drugs to block the dopamine receptor of the caudate nucleus (Carlsson and Lindqvist, 1963; Nyback and Sedvall, 1968). Biochemical and pharmacological studies have suggested an intimate association between the dopamine receptor and a dopamine-sensitive adenylate cyclase in the caudate since the properties of the enzyme mimicked in large part the actions of the dopamine receptor (Kebabian, Petzold and Greengard, 1972; Clement-Cormier, Kebabian, Petzold and Greengard, 1974; Iverson, 1975; Anden and Stock, 1973).


Dopamine Receptor Anterior Pituitary Cyclase Activity Adenylate Cyclase Activity Median Eminence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anden, N.-E. and Stock, G. (1973). Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J. Pharm.Pharmac. 25, 346–348.CrossRefGoogle Scholar
  2. Ben-David, N., Dannon, A., Benveniste, R., Weiler, C.P. and Sulman F.G. (1971). Results of radioimmunoassays of rat pituitary and serum prolactin after adrenalectomy and perphenazine treatment in rats. J. Endocr. 50, 599–606.PubMedCrossRefGoogle Scholar
  3. Birge, C.A., Jacobs, L.S., Hammer, C.T. and Daughaday, W.H. (1970). Catecholamine inhibition of prolactin secretion by isolated rat adenohypophyses. Endocrinology 86, 120–130.PubMedCrossRefGoogle Scholar
  4. Bowers, C.Y. (1971). Studies on the role of cyclic AMP in the release of anterior pituitary hormones. Ann. N.Y. Acad. Sci. 185, 52–540.CrossRefGoogle Scholar
  5. Carlsson, A. and Lindqvist, M. (1963). Effect of chloropromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta pharmac. tox. 20, 140–144.CrossRefGoogle Scholar
  6. Cehovic, G., Posternak, T. and Charallais, E. (1971). A study of biological activity and resistance to phosphodiesterase of some derivatives and analogues of cyclic AMP. Adv. Cyclic Nucleo. Res. 1, 521–540.Google Scholar
  7. Clement-Cormier, Y.C., Kebabian, J.W., Petzold, G.L. and Greengard, P. (1974). Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs. Proc. natn. Acad. Sci. U.S.A. 71, 1113–1117.CrossRefGoogle Scholar
  8. Cronin, M.J., Roberts, J.M. and Weiner, R.I. (1978). Dopamine and dihydroergocryptine binding to the anterior pituitary and other brain areas of the rat and sheep. Endocrinology (in press).Google Scholar
  9. Dannies, P., Gautivik, K. and Tashjian, A. (1974). Thyrotropin releasing hormone-cyclic AMP interrelationships in prolactin-producing cells in culture. Endocr. Soc. Abs. 56, A–151.Google Scholar
  10. Hollister, L.E. (1972). Clinical Use of Psychotherapeutic Drugs, volume 1. Springfield, Illinois: Charles C Thomas.Google Scholar
  11. Hornykiewicz, O. (1973). Parkinson’s disease: from brain homogenate to treatment. Fed. Proc. 32, No. 2, 183–190.PubMedGoogle Scholar
  12. Iversen, L.L. (1975). Dopamine receptors in the brain a dopamine-sensitive adenylate cyclase models synaptic receptors, illuminating antipsychotic drug action. Science 188, 1084–1089.PubMedCrossRefGoogle Scholar
  13. Kamberi, I.A., Mical, R. and Porter, J.C. (1971). Effect of anterior pituitary perfusion and intraventricular injection of catecholamines on prolactin release. Endocrinology 88, 1012–1020.PubMedCrossRefGoogle Scholar
  14. Kavanagh, A. and Weisz, J. (1973/74). Localization of dopamine and norepinephrine in the medial basal hypothalamus of the rat. Neuroendocrinology 13, 201–212.PubMedCrossRefGoogle Scholar
  15. Kebabian, J.W., Petzold, G.L. and Greengard, P. (1972). Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “Dopamine Receptor”. Proc. natn. Acad. Sci. U.S.A. 69, 2145–2149.CrossRefGoogle Scholar
  16. Kizer, J.S., Palkovits, M., Tappaz, M., Kebabian, J. and Brownstein, M.J. (1976). Distribution of releasing factors, biogenic amines and related enzymes in the bovine median eminence. Endocrinology 98, 685–695.PubMedCrossRefGoogle Scholar
  17. Koch, Y., Lu, H. and Meites, J. (1970). Biphasic effects of catecholamines on pituitary prolactin release in vitro. Endocrinology 87, 673–675.CrossRefGoogle Scholar
  18. Kordon, D., Epelbaum, J., Enjalbert, A. and McKelvy, J. (1976). Neurotransmitter interactions with neuroendocrine tissue. In: Subcellular Mechanisms in Reproductive Neuro endocrinology pp. 167–184. Eds. F. Naftalin, K.J. Ryan and I.J. Davies. Elsevier, New York.Google Scholar
  19. Labrie, F., Borgeat, O., Lemay, A., Lemaire, S., Barden, N., Drouin, J., Lemaire, I., Jolicoeur, P. and Bélanger, A. (1974). Role of cyclic AMP in the action of hypothalamic regulatory hormones. Adv. Cyclic Nucleo. Res. 5, 787–801.Google Scholar
  20. Lemay, A. and Labrie, F. (1972). Calcium-dependent stimulation of prolactin release in rat anterior pituitary in vitro by N6-monobutyryl adenosine 3′,5′-monophosphate. FEES Letters 20, 7–10.CrossRefGoogle Scholar
  21. Lu, K.-H., Amenomori, Y., Chen, C.-L. and Meites, J. (1970). Effects of central acting drugs on serum and pituitary prolactin levels in rats. Endocrinology 87, 667–672.PubMedCrossRefGoogle Scholar
  22. MacLeod, R.M. (1969). Influence of norepinephrine and catecholamine-depleting agents on the synthesis and release of prolactin and growth hormone. Endocrinology 85, 916–923.PubMedCrossRefGoogle Scholar
  23. Martin, J.B. (1973). Neural regulation of growth hormone secretion. New Engl. J. Med. 288, 1384–1392.PubMedCrossRefGoogle Scholar
  24. Nagasawa, H. and Yanai, R. (1972). Promotion of pituitary prolactin release in rats by dibutyryl adenosine 3′,5′-monophosphate. J. Endocr. 55, 215–216.PubMedCrossRefGoogle Scholar
  25. Nybäck, H. and Sedvall, G. (1968). Effect of chloropromazine on accumulation and disappearance of catecholamines formed from tyrosine C14 in brain. J. Pharmac. exp. Ther. 162, 294–301.Google Scholar
  26. Quijada, M., Illner, P., Krulich, L. and McCann, S.M. (1974). The effects of catacholamines on hormone release from anterior pituitaries and ventral hypothalami incubated in vitro. Neuroendocrinology 13, 151–163.CrossRefGoogle Scholar
  27. Shaar, C.J. and Clemens, J.A. (1974). The role of catecholamines in the release of anterior pituitary prolactin in vitro. Endocrinology 95, 1202–1212.PubMedCrossRefGoogle Scholar
  28. Sherman, L. and Kolodny, H.D. (1974). The effects of drugs on human hypophysiotropic functions. In: Mammary Cancer and Neuroendocrine Therapy, pp. 369–400. Ed. B.A. Stall. Butterworths, London.Google Scholar
  29. Smalstig, E.B., Swayer, B.D. and Clemens, J.A. (1974). Inhibition of rat prolactin release by apomorphine in vivo and in vitro. Endocrinology 95, 123–129.PubMedCrossRefGoogle Scholar
  30. Wakabayaski, K., Date, Y. and Tamaoki, B. (1973). On the mechanism of action of luteinizing hormone-releasing factor and prolactin release inhibiting factor. Endocrinology 92, 698–704.CrossRefGoogle Scholar
  31. Wolff, J. and Jones, A.B. (1970). Inhibition of hormone-sensitive adenyl cyclase by phenothiazines. Proc. natn, Acad. Sci. 65, 454–459.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Yvonne Clement-Cormier
    • 1
  1. 1.Department of PharmacologyThe University of Texas Medical SchoolHoustonUSA

Personalised recommendations