Advertisement

Changes in Cerebrocortical pO2 -Distribution, rCBF and EEG During Hypovolemic Shock

  • N. Wiernsperger
  • P. Gygax
  • W. Meier-Ruge
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 92)

Abstract

The prevention of the onset of irreversible damages in the brain is the primary aim in the treatment of cerebral vascular disorders. Surprisingly, the influence of hemorrhagic shock on tissue oxygenation, though it was extensively studied on various organs (Sinagowitz et al., 1973) was seldom measured in the brain. For this reason, we decided to simulate a vascular insufficiency by using the model of hypovolemic shock. Changes in blood flow in the grey matter were correlated with their consequences on tissue pO2 and EEG. In view of recent clinical results which demonstrate that disease states can disrupt the relationship between regional blood flow and oxidative metabolism (Raichle et al., 1976), we tried to improve the disturbed tissue oxygenation in two ways: a) by increasing the blood flow to the brain with a vasodilating drug (Papaverine) and b) by regulating the catecholamine metabolism with an α-adrenolytic drug,Dihydroergotoxine (Greenberg and Snyder, 1977).

Keywords

Mean Arterial Blood Pressure Hypovolemic Shock Silver Silver Silver Silver Chloride Catecholamine Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Enz, A., Iwangoff, P., Markstein, R., and Wagner, H. (1975) Triangel 14, 90Google Scholar
  2. 2.
    Greenberg, D.A., and Snyder, S.H. (1977) Life Sci. 20, 927PubMedCrossRefGoogle Scholar
  3. 3.
    Gygax, P., Stosseck, K., Emmenegger, H., and Schweizer, A., (1975a) in “Blood Flow and Metabolism in the Brain” 11.14.(Eds Harper, A.M., Jenett, W.B., Miller, J.D., and Rowan, J.O.) Churchill, LivingstoneGoogle Scholar
  4. 4.
    Gygax, P., Hunziker, O., Schulz, U., and Schweizer, A., (1975b) Triangel 14, 80Google Scholar
  5. 5.
    Kovach, A.G.B., and Sandor, P. (1976) Ann.Rev.Physiol. 39, 571CrossRefGoogle Scholar
  6. 6.
    Larcan, A., Streiff, F., Peters, A., and Genetet, B.(1966) Med.Pharmacol.Exp.15, 507Google Scholar
  7. 7.
    Prosenz, P. (1972) Arch.Neurol. 26, 479PubMedCrossRefGoogle Scholar
  8. 8.
    Raichle, M.E., Grubb, P.L., Gado, M.H., Eichling, J.O., and Ter-Pogossian, M.M. (1976) Arch.Neurol. 33, 523PubMedCrossRefGoogle Scholar
  9. 9.
    Raichle, M.E. , Hartman, B.K. , Eichung, J.O. , and Sharpe, L.G. (1975) Proc.Nat.Acad.Sci.USA 72, 3726PubMedCrossRefGoogle Scholar
  10. 10.
    Regli, F., Yamaguchi, T., and Waltz, A.G.(1971) Arch.Neurol. 24, 467PubMedCrossRefGoogle Scholar
  11. 11.
    Siesjö, B.K., Johannsson, H., Ljunggren, B., and Norberg, K. (1974) in “Brain Dysfunction and Metabolic Disorders” p.75 (Ed.Plum, F.) Raven Press, New-York.Google Scholar
  12. 12.
    Silver, I.A., (1976) Adv.Exp.Med.Biol. 75, 325PubMedGoogle Scholar
  13. 13.
    Sinagowitz, E., Rahmer, H., Rink, R., Görnandt, L., and Kessler, M. (1973) Adv.Exp.Med.Biol. 37A, 505PubMedGoogle Scholar
  14. 14.
    Smith, R.H., Guilbeau, E.J., and Reneau, D.D.(1977) Microvasc. Res. 13 , 233]PubMedCrossRefGoogle Scholar
  15. 15.
    Weidner, M.G., and Simeone, F.A.(1961) Surg.Forum 12, 82PubMedGoogle Scholar
  16. 16.
    Wiernsperger, N., Kunke, S., and Gygax, P. (1976) Experientia 32 , 671PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • N. Wiernsperger
    • 1
  • P. Gygax
    • 1
  • W. Meier-Ruge
    • 1
  1. 1.Department of Basic Medical ResearchSandoz LtdBaselSwitzerland

Personalised recommendations