Regulation of Mitochondrial Respiration in Intact Tissues: A Mathematical Model

  • David F. Wilson
  • Charles S. Owen
  • Maria Erecińska
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 92)


Adenosine triphosphate [ATP] synthesized by mitochondrial oxidative phosphorylation is utilized in most of the biosynthetic pathways of the cell as well as for maintenance of the intracellular ion balance and for specialized functions such as muscle contraction and nerve transmission. This central role in cellular metabolism requires that mitochondrial oxidative phosphorylation (respiration) be subject to precise regulation by the cell. Understanding of this regulatory mechanism both qualitatively and quantitatively is essential to our knowledge of cytosolic-mitochondrial interrelationships and of overall cellular metabolism.


Respiratory Rate Mitochondrial Respiration Turnover Number Heart Mitochondrion Sodium Ascorbate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chance, B., Erecinska, M. and Chance, E.M. (1973) Oxidase and Related Redox Systems II, (T.E. King, H.S. Mason and M. Morrison, eds.) Univ. Park Press, p. 851–866.Google Scholar
  2. Chance, B., Saronio, C. and Leigh, J.S.Jr. (1975) J. Biol. Chem. 250, 9226–9237.PubMedGoogle Scholar
  3. Erecinska, M., Veech, R.L. and Wilson, D.F. (1974) Arch. Biochem. Biophys. 160, 412–421.PubMedCrossRefGoogle Scholar
  4. George, P. (1965) in “Oxidases and Related Redox Sytems” (T.E. King, H.S. Mason and M. Morrison, eds.) Vol. 1, John Wiley, N.Y. p. 3–33.Google Scholar
  5. Gibson, Q.H. and Greenwood, C. (1964) J. Biol. Chem. 239, 586–590.PubMedGoogle Scholar
  6. Greenwood, C., Wilson, M.T. and Brunori, M. (1974) Biochem. J. 137, 202–215.Google Scholar
  7. Holian, A., Owen, C.S. and Wilson, D.F. (1977) Arch. Biochem. Biophys. 181, 164–171.PubMedCrossRefGoogle Scholar
  8. Lindsay, J.G. and Wilson, D.F. (1974) FEBS Letters 48, 45–49.PubMedCrossRefGoogle Scholar
  9. Lindsay, J.G., Owen, C.S. and Wilson, D.F. (1975) Arch. Biochem. Biophys. 169, 492–505.PubMedCrossRefGoogle Scholar
  10. Orii, Y. and King, T.E. (1972) FEBS Letters 21, 199–202.PubMedCrossRefGoogle Scholar
  11. Owen, C.S. and Wilson, D.F. (1974) Arch. Biochem. Biophys. 161, 581–591.PubMedCrossRefGoogle Scholar
  12. Wilson, D.F. and Brocklehurst, E.S. (1973) Arch. Biochem. Biophys. 158, 200–212.PubMedCrossRefGoogle Scholar
  13. Wilson, D.F., Erecinska, M., Lindsay, J.G., Leigh, J.S.Jr. and Owen C.S. (1975) Proc. 10th FEBS Meeting, p. 195–210.Google Scholar
  14. Wilson, D.F., Erecinska, M., and Owen, C.S. (1976) Arch. Biochem. Biophys. 175, 160–172.PubMedCrossRefGoogle Scholar
  15. Wilson, D.F., Owen, C.S. and Holian, A. (1977) Arch. Biochem. Biophys., August issue.Google Scholar
  16. Wilson, D.F., Stubbs, M., Oshino, N. and Erecinska, M. (1974 b) Biochemistry 13, 5305–5311.PubMedCrossRefGoogle Scholar
  17. Wilson, D.F., Stubbs, M., Veech, R.L., Ereciriska, M., and Krebs, H.A. (1974 a) Biochem. J. 140, 57–64.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • David F. Wilson
    • 1
  • Charles S. Owen
    • 1
  • Maria Erecińska
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations