On The Mechanism of Regulation of Cellular Respiration. The Dependence of Respiration on the Cytosolic [ATP], [ADP] and [PI]

  • Maria Erecińska
  • David F. Wilson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 92)


Mitochondrial oxidative phosphorylation consists of two types of reactions: electron transfer reactions and ATP-synthesizing reactions. Electron transfer from the reducing substrates to molecular oxygen occurs down the electrochemical potential gradient and is therefore accompanied by a negative free energy change. ATP synthesis is, on the other hand, an energy-requiring process which cannot occur spontaneously unless it is linked to another energy yielding reaction. In vivo in the cell, the obligatory coupling between the mitochondrial redox reactions and ATP synthesis provides the latter with the necessary “energetic push”.


Adenine Nucleotide Energy Charge Adenylate Kinase Mitochondrial Oxidative Phosphorylation Candida Utilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, D.E. (1966) Ann. Rev. Biochem. 35, 85–124.CrossRefGoogle Scholar
  2. Atkinson, D.E. (1968) Biochemistry 7, 4030–4034.PubMedCrossRefGoogle Scholar
  3. Bachelard, H.S., Lewis, L.D., Pontén, U., and Siesjo, B.K. (1974) J. Neurochem. 22, 395–401.PubMedCrossRefGoogle Scholar
  4. Beis, I., and Newsholme, E.A. (1975) Biochem. J. 152, 23–32.PubMedGoogle Scholar
  5. Chance, B., and Hollunger, G. (1961) J. Biol. Chem. 236, 1577–1584.PubMedGoogle Scholar
  6. Duffy, T.E., Nelson, S.R., and Lowry, O.H. (1972) J. Neurochem. 19, 959–977.PubMedCrossRefGoogle Scholar
  7. Erecinska, M., Veech, R.L. and Wilson, D.F. (1974) Archiv. Biochem. Biophys. 160, 412–421.Google Scholar
  8. Erecinska, M., Stubbs, M., Miyata, Y., Ditre, C.M., and Wilson, D.F. (1977) Biochem. Biophys. Acta in press.Google Scholar
  9. Holian, A., Wilson, D.F. and Owen, C.S. (1977) Archiv. Biochem. Biophys. 181, 164–171.CrossRefGoogle Scholar
  10. Klingenberg, M., and Schollmeyer, P. (1961) Biochem. Z. 235, 243–262.Google Scholar
  11. Longmuir, I.S., (1957) Biochem. J. 65, 378–382.PubMedGoogle Scholar
  12. Raivio, K.O., Kekomaki, M.P. and A Mäenpää (1969) Biochem. Pharmacology 18, 2615–2624.CrossRefGoogle Scholar
  13. Warburg, O., and Kubowitz, F. (1929) Biochem. Z. 214, 5–18.Google Scholar
  14. Williamson, D.H., Lund, P., and Krebs, H.A. (1967) Biochem. J. 103, 514–527.PubMedGoogle Scholar
  15. Williamson, D.H., Mellanby, J. and Krebs, H.A. (1962) Biochem. J. 82, 90–96.PubMedGoogle Scholar
  16. Wilson, D.F., Erecińska, M., and Dutton, P.L. (1974 a) Ann. Rev. Biophys. Bioeng. 3, 203–230.CrossRefGoogle Scholar
  17. Wilson, D.F., Owen, C.S. and Holian, A. (1977 a) Archiv. Biochem. Biophys. in press.Google Scholar
  18. Wilson, D.F., Erecińska, M., Drown, C. and Silver, I.A. (1977 b) Amer. J. Physiol. in press.Google Scholar
  19. Wilson, D.F., Stubbs, M., Oshino, N., and Erecińska, M. (1974 b) Biochenu 13, 5305–5311.CrossRefGoogle Scholar
  20. Wilson, D.F., Stubbs, M., Veech, R.L., Erecinska, M., and Krebs, H.A. (1974 c) Biochem. J. 140, 57–64.PubMedGoogle Scholar
  21. Woods, H.F., Eggleston, L.V., Krebs, H.A. (1970) Biochem. J. 119, 501–510.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Maria Erecińska
    • 1
  • David F. Wilson
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations