Bose-Einstein Statistics in Exciton Systems

  • A. Mysyrowicz
  • D. Hulin
  • L. L. Chase
Part of the NATO Advanced Science Institute Series book series (NSSB, volume 88)


In the first part, the quantum-statistical properties of an ensemble of Bose particles are briefly reviewed. The ideal model of non-interacting bosons is introduced. Next, the effects due to the inclusion of residual forces are considered. The model is then applied to the case of excitonic particles in non-metallic crystals. The limitations of its validity are stressed.

In the second part, different methods of detecting quantum-statistical effects in an excitonic fluid are described. Experimental results obtained in Cu2O and CuCl are then presented. In Cu2O, free excitons show a gradual evolution, from a classical to a quantum degenerate regime with increasing particle densities. In CuCl, anomalies in the luminescence of excitonic molecules are attributed to the occurrence of Bose-Einstein condensation.


Probe Beam Free Exciton Bose Condensation Exciton Density Solid State Comm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooper pairs of electrons in superconductors or pairs of 3He atoms in superfluid 3He below 3mK represent a special case of the degenerate Bose regime, which cannot be treated in the framework of the ideal Bose gas model (the average distance between different pairs is small compared to the radius of a pair).Google Scholar
  2. 2.
    Experimentally, it is found that the energy distribution of the He atoms is very different from the ideal Bose distribution of equation (2b). In fact, the uncondensed fraction appears to have an almost classical (Boltzmann) distribution characterized by an effective temperature of about 15°K even when the sample is well below the lambda point at 2.17K. The condensed fraction has been measured recently. It is the order of 10 percent well below Tλ, and it is found to have a temperature variation which is considerably different from that of an ideal Bose-Einstein condensate.Google Scholar
  3. 3.
    A. Einstein, Sitz, pr. Akad. Wiss. Phys. Math. Kl 22., 261 (1924),Google Scholar
  4. 3a.
    A. Einstein, Sitz, pr. Akad. Wiss. Phys. Math. Kl 23 3 (1925).Google Scholar
  5. 4.
    F. London, Nature, Lond 141, 643 (1938).ADSCrossRefGoogle Scholar
  6. 4a.
    F. London, Superfluids vol. 2 (Wiley 1954).MATHGoogle Scholar
  7. 5.
    N. Bogoliubov, J. Phys. USSR 11, 23 (1947).Google Scholar
  8. 6.
    A detailed account may be found for instance in G.D. Mahan, Many Particle Physics, Plenum, New York, 1981.Google Scholar
  9. 7.
    See for instance L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, 1958).Google Scholar
  10. 8.
    T.D. Lee, C.N. Yang, Phys. Rev. 112, 1419 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 8a.
    S.T. Beliaev, Z. Exp. Teor. Phys. 34, 433 (1958)Google Scholar
  12. 8b.
    S.T. Beliaev, (Sov. Phys. JETP 7, 299 (1958).MathSciNetGoogle Scholar
  13. 9.
    For a recent review, see for instance the articles by P.J. Dean and R.S. Knox in this volume.Google Scholar
  14. 10.
    S.A. Moskalenko, Fiz. Tverd. Tela 4 276 (1962)Google Scholar
  15. 10a.
    S.A. Moskalenko, (Soviet Physics Solid State 4 199 (1962).Google Scholar
  16. 11.
    I.M. Blatt, K.W. Böer, W. Brandt, Phys. Rev. 126 1691 (1962).ADSCrossRefGoogle Scholar
  17. 12.
    R.C. Casella, J. Phys. Chem. Solids 24, 19 (1963).ADSCrossRefGoogle Scholar
  18. 13.
    L.V. Keldysh, A.N. Kozlov, Zh. Eksp. Teor. Fiz 54, 978 (1968)Google Scholar
  19. 13a.
    L.V. Keldysh, A.N. Kozlov, (Sov. Phys. JETP 27 521, 1968).ADSGoogle Scholar
  20. 14.
    E. Hanamura, Solid State Comm. 12, 951 (1973).ADSCrossRefGoogle Scholar
  21. 15.
    See the article by C. Benoit a la Guillaume in this volume.Google Scholar
  22. 16.
    R.K. Wehner, Solid State Comm. 7 457 (1969).ADSCrossRefGoogle Scholar
  23. 17.
    O. Akimoto, E. Hanamura, J. Phys. Soc. Japan 33, 1537 (1972).ADSCrossRefGoogle Scholar
  24. 18.
    W.F. Brinkman, T.M. Rice. B. Bell, Phys. Rev. B8, 1570 (1973).ADSGoogle Scholar
  25. 19.
    F. Bassani, M. Rovere, Solid State Comm. 19, 887 (1976).ADSCrossRefGoogle Scholar
  26. 20.
    L.H. Nosanow, J. de Physique 41 C7–1 (1980).MathSciNetGoogle Scholar
  27. 21.
    W.F. Brinkman, T.M. Rice, Phys. Rev. B7 1508 (1973).ADSGoogle Scholar
  28. 22.
    L.V. Keldysh, Y.V. Kopeav, Fiz. Tver. Tela 6, 2791 (1964)Google Scholar
  29. 22a.
    L.V. Keldysh, Y.V. Kopeav, Soviet Physics Solid State 6, 2219 (1965).Google Scholar
  30. 23.
    A.J. Leggett, J. de Physique 41 C7–19.Google Scholar
  31. 24.
    P. Nozieres, private communication.Google Scholar
  32. 25.
    Y. Toyozawa, Prog. Theor. Phys. Suppl 12 111 (1959).ADSCrossRefGoogle Scholar
  33. 26.
    M. Inoue, E. Hanamura, J. Phys. Soc. Japan 41 771 (1976).ADSCrossRefGoogle Scholar
  34. 27.
    V. Yakhot, E. Levich, Physics Letters 80A, 301 (1980).ADSGoogle Scholar
  35. 28.
    E. Levich, V. Yakhot, Phys. Rev. B15, 243 (1977).ADSGoogle Scholar
  36. 29.
    For a recent review see for instance R. Loudon in this volume.Google Scholar
  37. 30.
    R.S. Knox, Theory of Excitons (Academic Press, New York, 1963).MATHGoogle Scholar
  38. 31.
    J.G. Gay, Phys. Rev. B4, 2567 (1971).ADSGoogle Scholar
  39. 32.
    N. Peyghambarian, L.L. Chase, A. Mysyrowicz, Optics Comm. 41, 178 (1982).ADSCrossRefGoogle Scholar
  40. 33.
    K. Jarasiunas, H.J. Gerritsen, Appl. Phys. Lett. 33. 190 (1978).ADSCrossRefGoogle Scholar
  41. 34.
    For a review of excitonic properties of Cu2O see for instance S. Nikitine in Optical Properties of Solids, Nudelman and Mitra editors, Plenum Press (1969).Google Scholar
  42. 35.
    E.F. Gross, I.I. Kreingold, V.L. Makarov, JETP Letters, 15, 383 (1972).Google Scholar
  43. 36.
    A. Mysyrowicz, D. Hulin, A. Antonetti, Phys. Rev. Lett. 43, 1123, 1275(E) (1979).ADSCrossRefGoogle Scholar
  44. 37.
    D. Hulin, A. Mysyrowicz, C. Benoit a la Guillaume, Phys. Rev. Lett. 45, 1970 (1980).ADSCrossRefGoogle Scholar
  45. 38.
    P. Yu, Y.R. Shen, Phys. Rev. Lett. 32, 939 (1974).ADSCrossRefGoogle Scholar
  46. 39.
    I.I. Kreingold, V.L. Makarov, Fiz. Tverd. Tela 15, 1307 (1973)Google Scholar
  47. 39a.
    I.I. Kreingold, V.L. Makarov, [Soviet Physics Solid State 15, 890 (1973)].Google Scholar
  48. 40.
    P.D. Bloch, C. Schwab, Phys. Rev. Lett. 41, 514 (1978).ADSCrossRefGoogle Scholar
  49. 41.
    A. Mysyrowicz, D. Hulin, C. Benoit a la Guillaume, Proc. Int. Conf. Luminescence, Berlin, (1981) to be published in J. of Luminescence.Google Scholar
  50. 42.
    A. Goldmann, Phys. Stat. Sol. b 81 9 (1977).ADSGoogle Scholar
  51. 43.
    For a review of the literature on biexcitons in CuCl see for instance C. Klingshirn, H. Haug, Physics Reports 70 315 (1981).ADSCrossRefGoogle Scholar
  52. 44.
    R.W. Svorec, L.L. Chase, Solid State Comm. 20, 353 (1976).ADSCrossRefGoogle Scholar
  53. 44a.
    N. Nagasawa, T. Mita, M. Ueta, J. Phys. Soc. Japan 41 929 (1976).ADSCrossRefGoogle Scholar
  54. 45.
    G.M. Gale, A. Mysyrowicz, Phys. Rev. Lett. 32, 727 (1974).ADSCrossRefGoogle Scholar
  55. 46.
    S. Suga, T. Koda, Phys. Stat. Sol. B61 291 (1974).ADSGoogle Scholar
  56. 47.
    H. Souma, T. Goto, T. Ohta, M. Ueta, J. Phys. Soc. Japan 29, 697 (1970).CrossRefGoogle Scholar
  57. 48.
    L.L. Chase, N. Peyghambarian, G. Grynberg, A. Mysyrowicz, Phys. Rev. Lett. 42, 1231 (1979).ADSCrossRefGoogle Scholar
  58. 49.
    T. Kushida, Solid State Comm. 32, 209 (1980).ADSCrossRefGoogle Scholar
  59. 50.
    R. Levy, C. Klingshirn, E. Ostertag, Vu Duy Phach, Y.B. Grun, Phys. Stat. Sol. b77, 381 (1976).ADSCrossRefGoogle Scholar
  60. 51.
    N. Nagasawa, T. Mita, M. Ueta, J. Phys. Soc. Japan 41, 929 (1976).ADSCrossRefGoogle Scholar
  61. 52.
    N. Peyghambarian, L.L. Chase, to be published.Google Scholar
  62. 53.
    N. Peyghambarian, L.L. Chase, A. Mysyrowicz, Optics Comm. 41, 178 (1982).ADSCrossRefGoogle Scholar
  63. 54.
    L.L. Chase, N. Peyghambarian, G. Grynberg, A. Mysyrowicz, Optics Comm. 28, 189 (1979).ADSCrossRefGoogle Scholar
  64. 55.
    Y. Masumoto, S. Shionoya, Solid State Comm. 38, 865 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • A. Mysyrowicz
    • 1
  • D. Hulin
    • 1
  • L. L. Chase
    • 1
    • 2
  1. 1.Groupe de Physique des Solides de l’Ecole Normale SupérieureUniversité de Paris VIIParisFrance
  2. 2.Physics DepartmentIndiana UniversityBloomingtonUSA

Personalised recommendations