Advertisement

Spectroscopy of Stoichiometric Laser Materials: Excitons or Incoherent Transfers?

  • F. Auzel
Part of the NATO Advanced Science Institute Series book series (NSSB, volume 88)

Abstract

In the so-called stoichiometric laser materials, a high concentration of active ions is necessitated by the micrometric dimensions of the laser. Such a high concentration leads to strong interactions between ions giving rise to a self-quenching process explained either in an energy transfer model with fast diffusion among donors before transfer to a quenching center or in an excito-nic model with exciton annihilation at the sample surface. Theoretical and experimental aspects of the spectroscopic and dynamical studies shall be presented with reference to usual laser materials along with a general discussion of self-quenching.

Keywords

Crystal Field Frenkel Exciton Energy Match Energy Transfer Model Stoichiometric Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Varsanyi, Appl. Phys. Lett. 19, 169 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    H. G. Danielmeyer and H. P. Weber, IEEE Q.E.8, 805 (1972).Google Scholar
  3. 3.
    See, for instance: (a) A. A. Kaminskii, in Luminescence of Inorganic Solids, ed. B. Di Bartolo (Plenum, New York, 1978), p. 511.CrossRefGoogle Scholar
  4. (3b).
    F. Auzel, in Radiationless Processes, ed. by B. Di Bartolo and V. Goldberg (Plenum, New York, 1978), p. 213.Google Scholar
  5. (3c).
    G. Huber, Current Topics in Material Science, Vol. 4 (Springer, 1980), p. 2.Google Scholar
  6. 4.
    F. Auzel, IEEE Q.E.12, 258 (1976).CrossRefGoogle Scholar
  7. 5.
    W. W. Krühler, G. Huber and H. G. Danielmeyer, Appl. Phys. 8, 261 (1975).ADSCrossRefGoogle Scholar
  8. 6.
    G. E. Peterson and P. M. Bridenbaugh, J. Optic. Soc. Am. 54, 644 (1975).ADSCrossRefGoogle Scholar
  9. 7.
    C. K. Asawa and M. Robinson, Phys. Rev. 1, 251 (1966).ADSCrossRefGoogle Scholar
  10. 8.
    H. G. Danielmeyer, in Advances in Lasers, Vol. II (Decker, 1975).Google Scholar
  11. 9.
    J. Chrysochoos, J. Chem. Phys. 6, 4596 (1974).ADSCrossRefGoogle Scholar
  12. 10.
    H. G. Danielmeyer and M. Blätte, Appl. Phys. 1, 2691 (1973).CrossRefGoogle Scholar
  13. 11.
    J. M. Flaherty and R. C. Powell, Phys. Rev. B19, 32 (1979).ADSGoogle Scholar
  14. 12.
    R. C. Powell, D. P. Neikirk, J. M. Flaherty and J. G. Gualtieri, J. Phys. Chem. Solids 41, 345 (1980).ADSCrossRefGoogle Scholar
  15. 13.
    A. S. Davidov, Theory of Molecular Excitons (Plenum, New York, 1971), p. 82.Google Scholar
  16. 14.
    H. Y. P. Hong, Acta Cryst. B30, 468 (1974).Google Scholar
  17. 15.
    R. M. Shelby and R. M. MacFarlane, Phys. Rev. Lett. 45, 1098 (1980).ADSCrossRefGoogle Scholar
  18. 16.
    M. Blätte, H. G. Danielmeyer and R. Ulrich, Appl. Phys. 1, 275 (1973).ADSCrossRefGoogle Scholar
  19. 17.
    P. F. Liao, H. P. Weber and B. C. Tofield, Solid State Commun. 16, 881 (1975).ADSCrossRefGoogle Scholar
  20. 18.
    C. M. Lawson, R. C. Powell and W. K. Zwicker, Phys. Rev. Lett., to be published.Google Scholar
  21. 19.
    H. C. Wolf, in Advances in Atomic and Molecular Physics, Vol. 3, ed. by D. R. Bates (Academic Press, 1967), p. 119.Google Scholar
  22. 20.
    M. D. Fayer and C. B. Harris, Phys. Rev. B9, 748 (1974).ADSGoogle Scholar
  23. 21.
    P. C. Diggle, K. A. Gehring and R. M. MacFarlane, Solid State Commun. 18, 391 (1976).ADSCrossRefGoogle Scholar
  24. 22.
    T. Fukuzawa and S. Tanimizer, J. of Lumin. 16, 447 (1978).CrossRefGoogle Scholar
  25. 23.
    A. Bergman, M. Levine and J. Jortner, Phys. Rev. Lett, 18, 112 (1972).Google Scholar
  26. 24.
    T. Kobayashi and S. Nagakura, Mol. Phys. 24, 695 (1972).ADSCrossRefGoogle Scholar
  27. 25.
    F. Aufel, Proc. IEEE 61, 758 (1973).CrossRefGoogle Scholar
  28. 26.
    M. Hirano and S. Shionoya, J. Phys. Soc. Japan 33, 112 (1972).ADSCrossRefGoogle Scholar
  29. 27.
    F. Auzel, Mat. Res. Bull. 14, 2223 (1979).Google Scholar
  30. 28.
    S. R. Chinn, H. Y. P. Hong and J. W. Pierce, Laser Focus 64 (May 1976).Google Scholar
  31. 29.
    B. Blanzat, J. P. Denis and J. Loriers, Proc. 10th R. E. Conf. 2, 1170 (1973).Google Scholar
  32. 30.
    C. Brecher, J. Chem. Phys. 61, 2297 (1974).ADSCrossRefGoogle Scholar
  33. 31.
    Y. V. Denisov, Y. I. Krasilov, N. F. Perevoschikov, I. A. Rozanov and N. N. Chudinov, Izest. Akad. Nak. SSSR, Neorg. Mater. 12, 1061 (1976).Google Scholar
  34. 32.
    R. M. Brewer and M. Nicol, J. of Lumin. 21, 367 (1980).ADSCrossRefGoogle Scholar
  35. 33.
    F. Auzel and J. Dexpert, to be published.Google Scholar
  36. 34.
    First proof of the existence of W3+ excitons were obtained by deconvolution of magnon-exciton and exciton-exciton transitions: R. S. Meltzer and H. W. Moos, Phys. Rev. B6, 264 (1972)ADSGoogle Scholar
  37. 34a.
    R. S. Meltzer, Solid State Commun. 20, 553 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • F. Auzel
    • 1
  1. 1.Centre National d’Etudes des TélécommunicationsBagneuxFrance

Personalised recommendations