Skip to main content

Optical Dynamics in Concentrated Mn2+ Systems

  • Chapter
Collective Excitations in Solids

Part of the book series: NATO Advanced Science Institute Series ((NSSB,volume 88))

Abstract

At very low temperatures, below the Neel point TN the optical spectra of the antiferromagnetic manganese fluoride systems exhibit fine structures which are related to both electronic and magnetic collective excitations. The experimental conditions, the optical pumping characteristics, the lattice temperature, the application of external factors such as an uniaxial stress or a magnetic field, have been used extensively in the way of identifying these transitions. More recently, these experimental conditions have been found to be of great interest in the study of dynamical properties.

Supported in part by NATO Research Grant No. 1169.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Goldberg, R. Moncorgé, D. Pacheco and B. Di Bartolo in Luminescence of Inorganic Solids, B. Di Bartolo, ed., Plenum Press, New York (1978).

    Google Scholar 

  2. H. Yamanoto, D. S. McClure, C. Marzaco and M. Waldman, Chem. Phys. 22, 79 (1977).

    Article  Google Scholar 

  3. R. Ya. Bron, V. V. Eremenko and E. V. Matjushkin, Sov. J. Low Temp. Phys. 5, 314 (1979).

    Google Scholar 

  4. B. A. Wilson, J. Hegarty and W. M. Yen, Phys. Rev. Lett. 41, 268 (1978).

    Article  ADS  Google Scholar 

  5. R. L. Greene, D. D. Sell, R. S. Fergelson, G. F. Imbusch and H. J. Guggenheim, Phys. Rev. 171, 600 (1968).

    Article  ADS  Google Scholar 

  6. D. J. Breed, Physica 37, 35 (1967).

    Article  ADS  Google Scholar 

  7. J. A. Van Jiujka, A. F. Arts and H. W. de Wijn, Phys. Rev. B21, 1963 (1979) and ref. therein.

    Google Scholar 

  8. G. A. Samara and J. F. Scott, Sol. St. Comm. 21, 167 (1977).

    Article  ADS  Google Scholar 

  9. Y. Yanaguchi and T. Sakuraba, J. Phys. Soc. Jap. 38 1011 (1975).

    Article  ADS  Google Scholar 

  10. D. Khatamian and M. F. Collins, Can. J. Phys. 55, 773 (1977).

    Article  ADS  Google Scholar 

  11. D. D. Sell, R. L. Greene and R. M. White, Phys. Rev. 158, 489 (1967).

    Article  ADS  Google Scholar 

  12. J. H. Van Vleck, Z. Phys. Chem. 41, 67 (1937).

    Article  Google Scholar 

  13. B. Jacquier, R. Moncorge and B. Di Bartolo, Sol. St. Comm. 31, 693 (1979) and ref. therein.

    Article  ADS  Google Scholar 

  14. J. B. Parkinson and R. Loudon, J. Phys. C 1, 1568 (1968).

    Article  ADS  Google Scholar 

  15. S. E. Stokowski, D. D. Sell and H. J. Guggenheim, Phys. Rev. B. 4, 3141 (1971).

    Article  ADS  Google Scholar 

  16. F. Auzel in Radiationless Processes, B. Di Bartolo, ed., Plenum Press, New York, (1979).

    Google Scholar 

  17. R. Moncorgé, B. Jacquier and F. Gaume, J. Mag and Mag. Mat. 15–18, 817 (1980).

    Article  Google Scholar 

  18. T. C. Chiang, P. Salvi, J. Davies and Y. R. Shen, Sol. St. Comm. 26, 217, 527 (1978).

    Article  ADS  Google Scholar 

  19. V. Gerhardt, W. Gebhardt, U. Kellner and E. Strauss (D.P.C. Conference, Madison USA, Bull. Am. Phys. Soc. 24, 898 (1979).

    Google Scholar 

  20. W. M. Yen, G. F. Imbusch and D. L. Huber in Optical Properties of Ions in Crystals, H. Crosswhite and H. Moos, eds., Inter Science, N.Y. 301, (1967).

    Google Scholar 

  21. F. M. Johnson and A. H. Nethercot, Jr., Phys. Rev. 114, 705 (1959).

    Article  ADS  Google Scholar 

  22. R. E. Dietz, A. Nisetch and H. J. Guggenheim, Phys. Rev. 16, (1966).

    Google Scholar 

  23. R. Moncorge, B. Jacquier and L. C. Brunei (to be published in J. Phys. Chem. Sol.)

    Google Scholar 

  24. E. G. Petrov and V. S. Oxtrovskii, Sov. J. Low Temp. Phys. 2, 713 (1976).

    Google Scholar 

  25. V. V. Eremenko and E. G. Petrov, Adv. in Phys. 26, 32 (1977).

    Google Scholar 

  26. A. A. Mil’ner and Yi. A. Popkov, Sov. J. Low Temp. Phys. 3, 92 (1977).

    Google Scholar 

  27. J. F. Holrichter, R. M. MacFarlane and A. L. Shawlow, Phys. Rev. Lett. 26, 652 (1971).

    Article  ADS  Google Scholar 

  28. R. E. Dietz, A. E. Meixner and H. J. Guggenheim, J. of Lumin. 1, 2 279 (1970).

    Article  Google Scholar 

  29. B. A. Wilson, Ph.D. Thesis (University of Wisconsin, Madison USA) 1978.

    Google Scholar 

  30. R. M. McFarlane and A. C. Luntz, Phys. Rev. Lett. 31, 832 (1973).

    Article  ADS  Google Scholar 

  31. H. T. Chen and R. S. Meltzer, Phys. Rev. Lett. 44, 599 (1980).

    Article  ADS  Google Scholar 

  32. J. Hegarty, B. A. Wilson, W. M. Yen, T. J. Glynn and G. F. Imbusch, Phys. Rev. B18, 5812 (1978).

    ADS  Google Scholar 

  33. D. L. Huber, Phys. Rev. B20, 2307 (1979).

    ADS  Google Scholar 

  34. Th. Förster, Disc. Faraday Soc. 27, 7 (1959).

    Article  Google Scholar 

  35. M. Inokuti and F. Hirayama, J. Chem. Phys. 43, 1978 (1965).

    Google Scholar 

  36. A. I. Burshtein, Sov. Phys. JETP 35, 882 (1972).

    ADS  Google Scholar 

  37. M. Yokota and O. Tanimoto, J. Phys. Soc. Jap. 22, 779 (1967).

    Article  ADS  Google Scholar 

  38. J. Heber, Phys. St. Sol. (b) 48, 319 (1971).

    Article  ADS  Google Scholar 

  39. K. K. Gosh, J. Hegarty and D. L. Huber, Phys. Rev. B22, 2837 (1980).

    ADS  Google Scholar 

  40. V. P. Sakun, Sov. Phys. Sol. St. 21 (3), 390 (1979).

    Google Scholar 

  41. B. A. Wilson, W. M. Yen, J. Hegarty and G. F. Imbush, Phys. Rev. B19, 4238 (1979).

    ADS  Google Scholar 

  42. N. M. Amer, T. C. Chiang and Y. R. Shen, Phys. Rev. Lett. 34, 1454 (1975).

    Article  ADS  Google Scholar 

  43. E. Strauss, Thesis (University of Regensburg, Germany) 1977.

    Google Scholar 

  44. E. Strauss, V. Gerhardt and W. Beghardt, J. Lumin. 18/19, 151 (1979).

    Article  Google Scholar 

  45. E. Strauss, W. J. Miniscalco, W. M. Yen, U. C. Kellner and V. Gerhardt, Phys. Rev. Lett. 44, 824 (1980).

    Article  ADS  Google Scholar 

  46. G. A. Thomas, A. Frova, J. C. Hensel, R. E. Miller and P. A. Lee, Phys. Rev. B13, 1692 (1976).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Moncorgé, R., Jacquier, B. (1983). Optical Dynamics in Concentrated Mn2+ Systems. In: Di Bartolo, B. (eds) Collective Excitations in Solids. NATO Advanced Science Institute Series, vol 88. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8878-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8878-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8880-7

  • Online ISBN: 978-1-4684-8878-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics