Collective Excitations in Concentrated Mn2+ Systems: Special Properties

  • D. P. Pacheco
Part of the NATO Advanced Science Institute Series book series (NSSB, volume 88)


The spectroscopic properties of such Mn2+ systems as MnF2, RbMnF3, and KMnF3 have been widely investigated over the past fifteen years or so. An important step in the understanding of these systems has been the realization of the role of collective excitations in determining these properties. In this article, the relationship between collective excitations and spectral features is explored. We begin with a description of the Mn2+ ion in a crystal and a discussion of its participation in collective excitations. Next, we briefly consider the magnetic properties of the crystals of interest here. Subsequent sections deal with excitons, magnons, and to a lesser extent phonons with particular attention to their effects on the optical properties of concentrated Mn systems.


Collective Excitation Spin Excitation Exciton Line Sideband Transition Transfer Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. D. Sell, R. L. Greene, and R. M. White, Phys. Rev. 158, 489 (1967).ADSCrossRefGoogle Scholar
  2. 2.
    D. P. Pacheco and B. Di Bartolo, in Luminescence of Inorganic Solids (B. Di Bartolo, ed.), Plenum Press, New York, 1978, p. 295.CrossRefGoogle Scholar
  3. 3.
    K. C. Turberfield, A. Okazaki, and R. W. H. Stevenson, Physics Letters 8, 9 (1964);ADSCrossRefGoogle Scholar
  4. 3a.
    K. C. Turberfield, A. Okazaki, and R. W. H. Stevenson Proc.Phys. Soc. 85, 743 (1965).ADSCrossRefGoogle Scholar
  5. 4.
    C. G. Windsor, and R. W. H. Stevenson, Proc. Phys. Soc. 87, 501 (1966).ADSCrossRefGoogle Scholar
  6. 5.
    S. J. Pickart, M. F. Collins, and C. G. Windsor, J. Appl. Phys. 37, 1054 (1966).ADSCrossRefGoogle Scholar
  7. 6.
    D. Khatamian and M. F. Collins. Can. J. Phys. 55, 773 (1977).ADSCrossRefGoogle Scholar
  8. 7.
    R. E. Dietz and A. Misetich, in Localized Excitations in Solids (Plenum Press, New York, 1968), p. 366.Google Scholar
  9. 8.
    R. E. Dietz, A. E. Meixner, H. J. Guggenheim, and A. Misetich, J. Luminescence 12, 279 (1970).CrossRefGoogle Scholar
  10. 9.
    N. M. Amer, T. Chiang, and Y. R. Shen, Phys. Rev. Letters 34, 1454 (1975).ADSCrossRefGoogle Scholar
  11. 10.
    B. A. Wilson, W. M. Yen, J. Hegarty, and G. F. Imbusch, Phys. Rev. B19, 4238 (1979).ADSGoogle Scholar
  12. 11.
    R. M. Macfarlane and A. C. Luntz, Phys. Rev. Letters 31, 832 (1973).ADSCrossRefGoogle Scholar
  13. 12.
    See, for example, reference 2 above. Other sources include: C. Kittel, Quantum Theory of Solids, John Wiley & Sons, Inc., New York, 1963, p. 58;Google Scholar
  14. 12a.
    V. Jaccarino, in Magnetism, Vol. II. A. (G. T. Rado and H. Suhl, eds.), Academic Press, New York, 1963.Google Scholar
  15. 13.
    R. M. White, Physics Letters 19, 453 (1965).ADSCrossRefGoogle Scholar
  16. 14.
    R. L. Greene, D. D. Sell, W. M. Yen, A. L. Schawlow and R. M. White, Phys. Rev. Letters 15, 656 (1965).ADSCrossRefGoogle Scholar
  17. 15.
    D. D. Sell, Ph.D. Thesis, Standord University, 1967 (unpublished)Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • D. P. Pacheco
    • 1
  1. 1.Department of PhysicsBoston CollegeChestnut HillUSA

Personalised recommendations