Surface Collective Excitations

  • G. Benedek
Part of the NATO Advanced Science Institute Series book series (NSSB, volume 88)


The first part of this article is a basic introduction to the theory of surface collective excitations from the macroscopic point of view. The solution of the elastic wave equation and of the Maxwell equations combined with the appropriate boundary conditions yields the dispersion relations of Rayleigh waves and of polaritons associated with surface plasmons, excitons, optical phonons and magnons, respectively. The second part is devoted to the theory of surface phonons from the microscopic point of view. A short review of the various methods used in surface lattice dynamics serves as an introduction to the Green’s function theory of surface vibrations in ionic crystals. Finally the recent progress in the spectroscopy of surface phonons by means of atom scattering is mentioned with an illustration of the late achievement in the theoretical interpretation of inelastic spectra.


Dispersion Curve Rayleigh Wave Surface Mode Surface Polariton Elastic Wave Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Ledermann, Proc. Roy. Soc. A182, 362 (1944).MathSciNetADSGoogle Scholar
  2. 2.
    G. W. Farnell, Physical Acoustics 6, 109 (1970).Google Scholar
  3. 3.
    A. A. Maradudin, R. F. Wallis and L. Dobrzinski, Handbook of Surfaces and Interfaces, Vol, 3: Surface Phonons and Polaritons (Garland STPM Press, New York, 1980).Google Scholar
  4. 4.
    A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer and R.F. Wallis, J. Phys. C.: Solid State Physics 6, 1266 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    F. Garcia-Moliner, Ann. Phys. (Paris) 2, 179 (1977).Google Scholar
  6. 6.
    R. Fuchs and K.L. Kliever, Phys. Rev. 140, A2076 (1965);ADSCrossRefGoogle Scholar
  7. 6a.
    K.L. Kliever and R. Fuchs, Phys. Rev. 144, 495 (1966);ADSCrossRefGoogle Scholar
  8. 6b.
    K.L. Kliever and R. Fuchs, Phys. Rev. 150, 573 (1966).ADSCrossRefGoogle Scholar
  9. 7.
    T.S. Chen, F.W. de Wette and G.P. Alldredge, Phys. Rev. B. 15, 1167 (1977).ADSCrossRefGoogle Scholar
  10. 8.
    A. Otto, Z. Phys. 216, 398 (1968).ADSCrossRefGoogle Scholar
  11. 9.
    V.V. Bryskin, Yu. M. Gerbshtein and D.N. Mirlin, Fiz. Tverd. Tela 13, 2125 (1972) (Sov. Phys. Sol. State 13, 1779 (1972));Google Scholar
  12. 9a.
    V.V. Bryskin, Yu. M. Gerbshtein and D.N. Mirlin, Fiz. Tverd. Tela 14, 543, 3368 (1972) (Sov. Phys. Sol. State 14, 453, 2849 (1972).Google Scholar
  13. 10.
    D.J. Evans, S. Ushioda and J.D. McMullen, Phys. Rev. Letters 31, 369 (1973).ADSCrossRefGoogle Scholar
  14. 11.
    H. Boersch, J. Geiger and W. Stickel, Phys. Rev. Letters 17, 379 (1966).ADSCrossRefGoogle Scholar
  15. 12.
    H. IBach, Phys. Rev. Letters 24, 1416 (1970).ADSCrossRefGoogle Scholar
  16. 13.
    G. Benedek, Surface Scil 61, 603 (1976).ADSCrossRefGoogle Scholar
  17. 14.
    R.F. Wallis, Rendiconti SIF, Course LII (Academic Press, New York and London, 1972).Google Scholar
  18. 15.
    T. E. Feuchtwang, Phys. Rev. 155, 731 (1967).ADSCrossRefGoogle Scholar
  19. 16.
    V. Bortolani, F. Nizzoli and G. Santoro, Proc. Int. Conf. on Lattice Dynamics, M. Balkanski, ed. (Flammarion, 1978).Google Scholar
  20. 17.
    A.A. Lucas, J. Chem. Phys. 48, 3156 (1968).ADSCrossRefGoogle Scholar
  21. 18.
    R.E. Allen, G.P. Alldredge and F.W. de Wette, Phys. Rev. B4, 1648 (1971);ADSGoogle Scholar
  22. 18a.
    R.E. Allen, G.P. Alldredge and F.W. de Wette, Phys. Rev. B4 1661 (1971);ADSGoogle Scholar
  23. 18b.
    R.E. Allen, G.P. Alldredge and F.W. de Wette, Phys. Rev. B4 1682 (1971).ADSGoogle Scholar
  24. 19.
    Ref. 7. See also T.S. Chen, G.P. Alldredge and F.W. de Wette Solid State Comm. 10, 941 (1972).ADSCrossRefGoogle Scholar
  25. 20.
    I.M. Lifshitz and L. Rozenzweig, Zh. Eksp. Teor. Fiz. 18, 1012 (1948);Google Scholar
  26. 20a.
    I.M. Lifshitz, Muovo Cim. Suppl. 3, 732 (1956).MathSciNetGoogle Scholar
  27. 21.
    A.A. Maradudin, E.W. Montroll, G.H. Weiss and L.P. Ipatova, Solid State Physics Suppl. 3 (2nd edition, 1971).Google Scholar
  28. 22.
    W. Ludwig and B. Lengeier, Solid State Comm. 2, 83, (1964).ADSCrossRefGoogle Scholar
  29. 23.
    S. Doniach and E.H. Sondheimer, Green’s Functions for Solid State Physicists (Benjamin Inc., 1974).Google Scholar
  30. 24.
    G. Benedek, Phys. Stat. Solidi B. 58, 661 (1973).ADSCrossRefGoogle Scholar
  31. 25.
    G.P. Alldredge., Phys. Letters 41A, 281 (1972).ADSGoogle Scholar
  32. 26.
    In my previous Green’s function calculations (ref. 13) the M̄ point degeneracy was not verified. Recently I could discover a computational error affecting the calculation in a small region around M̄ which was causing the misfit. An erratum is to be published on Surface Science.Google Scholar
  33. 27.
    G. Brusdeylins, R.B. Doak and J.P. Toennies, Phys. Rev. Letters 46, 437 (1981).ADSCrossRefGoogle Scholar
  34. 28.
    G. Benedek and N. Garcia, Surf. Sc. 103, L143 (1981).CrossRefGoogle Scholar
  35. 29.
    R.B. Doak, J.P. Toennies and G. Brusdeylins, private communication; R.B. Doak, Thesis (M.I.T., 1981; unpublished).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • G. Benedek
    • 1
  1. 1.Gruppo Nazionale di Struttura della Materia del Consiglio Nazionale delle RicercheIstituto di Fisica dell’UniversitàMilanoItaly

Personalised recommendations