Skeletal Muscle Proteases and Protein Turnover

  • Darrel E. Goll
  • William C. Kleese
  • Adam Szpacenko


Schoenheimer and Rittenberg’s paper published nearly 50 years ago (Schoen-heimer and Rittenberg, 1940) established that accumulation of muscle tissue or muscle growth must depend on both the rate of muscle protein synthesis and the rate of muscle protein degradation. Despite this axiom, most of the attention of animal scientists during the period from 1940 to 1980 focused on increasing the rate of muscle growth by increasing the rate of muscle protein synthesis. Because of this, a great deal is known about the mechanism of muscle protein synthesis and how it is controlled. Little is known, however, about the mechanism of muscle protein degradation. It is clear that muscle proteins turn over metabolically with half lives ranging from 2 to 20 days (Low and Goldberg, 1973; Koizumi, 1974; Rubenstein et al., 1976; Martin et al., 1977; Zak et al., 1977; Millward et al., 1978; Martin, 1981; Wolitsky et al., 1984), but the nature of the proteolytic enzymes responsible for this turnover remains unknown. It was learned in 1969 that the rate of muscle protein degradation can vary over a wide range in response to physiological demand (Goldberg, 1969a,b).


Muscle Protein Protein Turnover Muscle Protein Synthesis Myofibrillar Protein Rabbit Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afifi, A. K., A. M. Al-Gailany, J. M. Salman and N. B. Bahuth. 1977. Nerve and muscle in steroid-induced weakness in the rabbit. Arch. Phys. Med. Rehabil. 58:143.Google Scholar
  2. Bachmair, A., D. Finley and A. Varshavsky. 1986. In vivo half-life of a protein is a function of its amino-terminal sequence. Science 234:179.PubMedGoogle Scholar
  3. Ballard, F. J., F. M. Thomas and L. M. Stern. 1979. Increased turnover of muscle contractile proteins in Duchenne muscular dystrophy as assessed by 3-methylhistidine and creatinine excretion. Clin. Sci. 56:347.PubMedGoogle Scholar
  4. Barrett, A. J., and J. K. McDonald. 1980. Mammalian Proteases: A Glossary and Bibliography. Vol. I. Academic Press, New York.Google Scholar
  5. Barrett, A. J. and G. Salvesen. 1986. Proteinase Inhibitors. Elsevier, Amsterdam.Google Scholar
  6. Bertorini, T. E., S. K. Bhattacharya, G. M. A. Palmieri, C. M. Chesney, D. Pifer and B. Baker. 1982. Muscle calcium and magnesium content in Duchenne muscular dystrophy. Neurology 32:1088.PubMedGoogle Scholar
  7. Beynon, R. J. and J. Kay. 1978. The inactivation of native enzymes by a neutral proteinase from rat intestinal muscle. Biochem. J. 173:291.PubMedGoogle Scholar
  8. Bhan, A., A. Malhotra and V. B. Hatcher. 1978. Partial characterization of a protease from cardiac myofibrils of dystrophic hamsters. In: H. L. Segal and D. J. Doyle (Ed.) Protein Turnover and Lysosome Function, pp 607–618. Academic Press, New York.Google Scholar
  9. Bird, J. W. C. and J. H. Carter. 1980. Proteolytic enzymes in striated and non-striated muscle. In: K. Wildenthal (Ed.) Degradative Processes in Heart and Skeletal Muscle. pp. 51–85. Elsevier North-Holland Publ. Col, Amsterdam.Google Scholar
  10. Bird, J. W. C, A. M. Spanier and W. N. Schwartz. 1978. Cathepsins B and D: proteolytic activity and ultrastructural localization in skeletal muscle. In: H. L. Segal and D. J. Doyle (Ed.) Protein Turnover and Lysosome Function. pp 589–604. Academic Press, New York.Google Scholar
  11. Bodensteiner, J. B. and A. G. Engel. 1978. Intracellular calcium accumulation in Duchenne dystrophy and other myopathies: a study of 567,000 muscle fibers in 114 biopsies. Neurology 28:439.PubMedGoogle Scholar
  12. Bodwell, C. E. and A. M. Pearson. 1964. The activity of partially purified bovine catheptic enzymes on various natural and synthetic substrates. J. Food Sci. 29:602.Google Scholar
  13. Brooks, B. A., D. E. Goll, Y.-S. Peng, J. A. Greweling and G. Hennecke. 1983a. Effect of starvation and refeeding on activity of a Ca2 +-dependent protease in rat skeletal muscle. J. Nutr. 113:145.PubMedGoogle Scholar
  14. Brooks, B. A., D. E. Goll, Y.-S. Peng, J. A. Greweling and G. Hennecke. 1983b. Effect of alloxan diabetes on a Ca2 +-activated proteinase in rat skeletal muscle. Amer. J. Physiol. 244:C175.Google Scholar
  15. Busch, W. A., M. H. Stromer. D. E. Goll and A. Suzuki. 1972. Ca2+-specific removal of Z-lines from rabbit skeletal muscle. J. Cell Biol. 52:367.PubMedGoogle Scholar
  16. Canonico, P. G. and J. W. C. Bird. 1970. Lysosomes in skeletal muscle tissue. Zonal centrifu-gation evidence for multiple cellular sources. J. Cell Biol. 45:321.PubMedGoogle Scholar
  17. Carney, I. T., C. G. Curtis, J. Kay and N. L. Birket. 1980. A low-molecular-weight inhibitor of the neutral proteinase from rat intestinal smooth muscle. Biochem. J. 185:423.PubMedGoogle Scholar
  18. Chin, D. T., N. Carlson, L. Kuehl and M. Rechsteiner. 1986. The degradation of guanidinated lysozyme in reticulocyte lysate. J. Biol. Chem. 261:3883.PubMedGoogle Scholar
  19. Coolican, S. A. and D. R. Hathaway. 1984. Effect of L-a-phosphatidylinositol on a vascular smooth muscle Ca2+-dependent protease. Reduction of the Ca2+ requirement for autolysis. J. Biol. Chem. 259:11627.PubMedGoogle Scholar
  20. Cottin, P., P. L. Vidalenc, and A. Ducastaing. 1981. Ca2 +-dependent association between a Ca2 + -activated neutral protease (CaANP) and its specific inhibitor. FEBS Lett. 136:221.PubMedGoogle Scholar
  21. Crisona, N. J. and R. C. Strohman. 1983. Inhibition of contraction of cultured muscle fibers results in increased turnover of myofibrillar proteins but not of intermediate filament proteins. J. Cell Biol. 96:684.PubMedGoogle Scholar
  22. Cullen, M. J., S. T. Appleyard and L. Bindoff. 1979. Morphological aspects of muscle breakdown and lysosomal activtion. Ann. N.Y. Acad. Sci. 317:440.PubMedGoogle Scholar
  23. Cullen, M. J. and J.J. Fulthorpe. 1982. Phagocytosis of the A-band following Z line and I band loss. Its signficance in skeletal muscle breakdown. J. Pathol. 138:129.PubMedGoogle Scholar
  24. Cullen, M. J. and M. G. Pluskal. 1977. Early changes in the ultrastructure of denervated rat skeletal muscle. Exp. Neurol 56:115.PubMedGoogle Scholar
  25. Dahlmann, B., I. Block, L. Kuehn, M. Rutschmann and H. Reinauer. 1982. Immunological evidence for the identity of three proteinases from rat skeletal muscle. FEBS Lett. 138:88.PubMedGoogle Scholar
  26. Dahlmann, B., L. Kuehn, M. Rutschmann and H. Reinauer. 1985a. Purification and characterization of a multicatalytic high-molecular-mass proteinase from rat skeletal muscle. Biochem. J. 228:161.PubMedGoogle Scholar
  27. Dahlmann, B., M. Rutschmann, L. Kuehn and H. Reinauer. 1985b. Activation of the mutlicatal-ytic proteinase from rat skeletal muscle by fatty acids or sodium dodecyl sulfate. Biochem. J. 228:171.PubMedGoogle Scholar
  28. Dayton, W. R., D. E. Goll, M. H. Stromer, W. J. Reville, M. G. Zeece and R. M. Robson. 1975. Some properties of a calcium-activated protease that may be involved in myofibrillar protein turnover. In: E. Reich, D. B. Rifkin and E. Shaw (Ed.) Cold Spring Harbor Conferences on Cell Proliferation. Vol. 2, pp. 551–577. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  29. Dayton, W. R., D. E. Goll, M. G. Zeece, R. M. Robson and W. J. Reville, 1976a. A Ca2 + -activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle. Biochemistry 15:2150.PubMedGoogle Scholar
  30. Dayton, W. R., W. J. Reville, D. E. Goll and M. H. Stromer. 1976b. A Ca2 +-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme. Biochemistry 15:2159.PubMedGoogle Scholar
  31. Dayton, W. R. and J. V. Schollmeyer. 1981. Immunocytochemical localization of a calcium-activated protease in skeletal muscle cells. Exp. Cell Res. 136:423.PubMedGoogle Scholar
  32. Dayton, W. R., J. V. Schollmeyer, A. C. Chan and C. E. Allen. 1979. Elevated levels of a calcium-activated muscle protease in rapidly atrophying muscles from vitamin E-deficient rabbits. Biochim. Biophys. Acta 584:216.PubMedGoogle Scholar
  33. Dayton, W. R., J. V. Schollmeyer, R. A. Lepley and L. R. Cortes. 1981. A calcium-activated protease possibly involved in myofibrillar protein turnover. Isolation of a low-calcium-requiring form of the protease. Biochim. Biophys. Acta 659:48.PubMedGoogle Scholar
  34. DeMartino, G. N. 1983. Identification of a high molecular weight alkaline protease in rat heart. J. Mol. Cell. Cardiol. 15:17.PubMedGoogle Scholar
  35. Dhalla, N. S., P. K. Das and G. P. Sharma. 1978. Subcellular basis of cardiac contractile failure. J. Mol. Cell. Cardiol. 10:363.PubMedGoogle Scholar
  36. Eaton, D. L. and J. B. Baker. 1983. Evidence that a variety of cultured cells secrete protease nexin and produce a distinct cytoplasmic serine protease-binding factor. J. Cell. Physiol. 117:175.PubMedGoogle Scholar
  37. Emery, A. E. H. and D. Burt. 1980. Intracellular calcium and pathogenesis and antenatal diagnosis of Duchenne muscular dystrophy. Brit. Med. J. 280:355.PubMedGoogle Scholar
  38. Emori, Y., H. Kawaskai, S. Imajoh, K. Imahori and K. Suzuki. 1987. Endogenous inhibitor for calcium-dependent cysteine protease contains four internal repeats that could be responsible for its multiple reactive sites. Proc. Natl. Acad. Sci. USA 84:3590.PubMedGoogle Scholar
  39. Emori, Y., H. Kawaskai, S. Imajoh, S. Kawashima and K. Suzuki. 1986a. Isolation and sequence analysis of cDNA clones for the small subunit of rabbit calcium-dependent protease. J. Biol. Chem. 261:9472.PubMedGoogle Scholar
  40. Emori, Y., H. Kawasaki, H. Sugihara, S. Imajoh, S. Kawashima and K. Suzuki. 1986b. Isolation and sequence analyses of cDNA clones for the large subunits of two isozymes of rabbit calcium-dependent protease. J. Biol. Chem. 261:9465.PubMedGoogle Scholar
  41. Fagan, J. M., L. Waxman and A. L. Goldberg. 1987. Skeletal muscle and liver contain a soluble ATP-ubiquitin-dependent proteolytic system. Biochem. J. 243:335.PubMedGoogle Scholar
  42. Faust, P. L., S. Kornfeld, and J. M. Chirgwin. 1985. Cloning and sequence analysis of cDNA for human cathepsin D. Proc. Natl. Acad. Sci. U.S.A. 82:4910.Google Scholar
  43. Festoff, B. M., M. R. Patterson and K. Romstedt. 1982. Plasminogen activator: the major secreted neutral protease of cultured skeletal muscle cells. J. Cell. Physiol. 110:190.PubMedGoogle Scholar
  44. Fox, H. 1975. Aspects of tail muscle ultrastructure and its degeneration in Rana temporaria. J. Embryol. Exp. Morphol. 24:191.Google Scholar
  45. Fox, J. E. B., D. E. Goll, C. C. Reynolds and D. R. Phillips. 1985. Identification of two proteins (actin-binding protein and P235) that are hydrolyzed by endogenous Ca2 + -dependent protease during platelet aggregation. J. Biol. Chem. 260:1060.PubMedGoogle Scholar
  46. Gerard, K. W. and D. L. Schneider. 1979. Evidence for degradation of myofibrillar proteins in lysosomes. Myofibrillar proteins derivatized by intramuscular injection of N-ethymaleimide are sequestered in lysosomes. J. Biol. Chem. 254:11798.PubMedGoogle Scholar
  47. Goldberg, A. L. 1969a. Protein turnover in skeletal muscle. I. Protein catabolism during work-induced hypertrophy and growth induced with growth hormone. J. Biol. Chem. 244:3217.PubMedGoogle Scholar
  48. Goldberg, A. L. 1969b. Protein turnover in skeletal muscle. II. Effects of denervation and cortisone on protein catabolism in skeletal muscles. J. Biol. Chem. 244:3223.PubMedGoogle Scholar
  49. Goldberg, A. L. and J. F. Dice. 1974. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem. 43:835.PubMedGoogle Scholar
  50. Goldberg, A. L., J. Kowit, J. Etlinger and Y. Klemes. 1978. Selective degradation of abnormal proteins in animal and bacterial cells. In: H. L. Segal and D. J. Doyle (Ed.) Protein Turnover and Lysosome Function, pp 171–196. Academic Press, New York.Google Scholar
  51. Goldberg, A. L. and A. C. St. John. 1976. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu. Rev. Biochem. 45:747.PubMedGoogle Scholar
  52. Goldspink, D. F., P. J. Garlick and M. A. McNurlan. 1983. Protein turnover measured in vivo and in vitro in muscles undergoing compensatory growth and subsequent denervation atrophy. Biochem. J. 210:89.PubMedGoogle Scholar
  53. Goll, D. E., T. Edmunds, W. C. Kleese, S. K. Sathe and J. D. Shannon. 1985. Some properties of the Ca2 +-dependent proteinase. In: E. A. Khairallah, J. S. Bond and J. W. C. Bird (Ed.) Intracellular Protein Catabolism. pp 151–164. Alan R. Liss, New York.Google Scholar
  54. Goll, D. E., W. C. Kleese, D. A. Sloan, J. D. Shannon and T. Edmunds. 1986. Properties of the Ca2 + -dependent proteinases and their protein inhibitor. Cienc. Biol. (Luanda) 11:75.Google Scholar
  55. Goll, D. E., Y. Otsuka, P. A. Nagainis, J. D. Shannon, S. K. Sathe and M. Muguruma. 1983a. Role of muscle proteinases in maintenance of muscle integrity and mass. J. Food Biochem. 7:137.Google Scholar
  56. Goll, D. E., R. M. Robson and M. H. Stromer. 1976. Muscle proteins. In: J. R. Whitaker and S. Tannenbaum (Ed.) Food Proteins, pp 121–174. AVI Publ. Co., Westport, CT.Google Scholar
  57. Goll, D. E., R. M. Robson and M. H. Stromer. 1984. Skeletal muscle. In: M. J. Swenson (Ed.) Dukes’ Physiology of Domestic Animals (10th Ed.). pp 548–580. Cornell Univ. Press, Ithaca, NY.Google Scholar
  58. Goll, D. E., J. D. Shannon, T. Edmunds, S. K. Sathe, W. C. Kleese and P. A. Nagainis. 1983b. Properties and regulation of the Ca2+-dependent proteinase. In: B. de Bernard, G. L. Sottocasa, G. Sandri, E. Carafoli, A. N. Taylor, T. C. Vanaman and R. J. P. Williams (Ed.) Calcium-Binding Proteins. pp. 19–35. Elsevier, Amsterdam.Google Scholar
  59. Gopinath, R. and W. D. Kitts. 1984. Growth, NT-methylhistidine excretion and muscle protein degradation in growing beef steers. J. Anim. Sci. 59:1262.PubMedGoogle Scholar
  60. Hathaway, D. R., D. K. Werth and J. R. Haeberle. 1982. Limited autolysis reduces the Ca2+requirement of a smooth muscle Ca2+ -activated protease. J. Biol. Chem. 257:9072.PubMedGoogle Scholar
  61. Hershko, A. and A. Ciechanover. 1982. Mechanisms of intracellular protein breakdown. Annu. Rev. Biochem. 51:335.Google Scholar
  62. Holmes, D., M. E. Parsons, D. C. Park and R. J. Pennington. 1971. An alkaline proteinase in muscle homogenates. Biochem. J. 125:98p.Google Scholar
  63. Hough, R., G. Pratt and M. Rechsteiner. 1986. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J. Biol. Chem. 261:2400.PubMedGoogle Scholar
  64. Hudecki, M. S., C. M. Pollina, R. R. Heffner and A. K. Bhargava. 1981. Enhanced functional ability in drug-treated dystrophic chickens: trial results with indomethacin, diphenylhydantoin, and prednisolone. Exp. Neurol. 73:173.PubMedGoogle Scholar
  65. Hurst, L. C, M. A. Badalamente, J. Ellstein and A. Stracher. 1984. Inhibition of neural and muscle degeneration after epineural neurorrhaphy. J. Hand Surg 9A:564.Google Scholar
  66. Iodice, A. A., J. Chin, S. Perker and I. M. Weinstock. 1972. Cathepsins A, B, C. D, and autolysis during development of breast muscle of normal and dystrophic chickens. Arch. Biochem. Biophys. 152:166.PubMedGoogle Scholar
  67. Imajoh, S., H. Kawashima, Y. Emori, S. Ishiura, Y. Minami, H. Sugita, K. Imahori, and K. Suzuki. 1987. A fragment of an endogenous inhibitor produced in Escherichia coli for calcium-activated neutral protease (CANP) retains an inhibitory activity. FEBS Lett. 215:274.PubMedGoogle Scholar
  68. Ishidoh, K., S. Imajoh, Y. Emori, S. Ohno, H. Kawasaki, Y. Minami, E. Kominami, N. Katunuma, and K. Suzuki. 1987. Molecular cloning and sequencing of cDNA for rat cathepsin H. Homology in pro-peptide regions of cysteine proteinases. FEBS Lett. 226:33.PubMedGoogle Scholar
  69. Ishidoh, K., T. Towatari, S. Imajoh, H. Kawasaki, E. Kominami, H. Katunuma, and K. Suzuki. 1987. Molecular cloning and sequencing of cDNA for rat cathepsin L. FEBS Lett. 223:69.PubMedGoogle Scholar
  70. Ishiura, S., I. Nonaka, H. Nakase, A. Tada and H. Sugita. 1984. Two-step mechanism of myofibrillar protein degradation in acute plasmid-induced muscle necrosis. Biochim. Biophys. Acta 798:333.PubMedGoogle Scholar
  71. Ishiura, S., M. Sano, K. Kamakura and H. Sugita. 1985. Isolation of two forms of the high-molecular-mass serine protease, ingensin, from porcine skeletal muscle. FEBS Lett. 189:119.PubMedGoogle Scholar
  72. Ishiura, S. and H. Sugita. 1986. Ingensin, a high-molecular-mass alkaline protease from rabbit reticulocyte. J. Biochem. 100:753.PubMedGoogle Scholar
  73. Ishiura, S., H. Sugita, I. Nonaka and K. Imahori. 1980. Calcium-activated neutral protease. Its localization in the myofibril especially at the Z-band. J. Biochem. 87:343.PubMedGoogle Scholar
  74. Ishiura, S., H. Sugita, K. Suzuki and K. Imahori. 1979. Studies of a calcium-activated neutral protease from chicken skeletal muscle. II. Substrate specificity. J. Biochem. 86:579.PubMedGoogle Scholar
  75. Ishiura, S., S. Tsuji, H. Murofushi and K. Suzuki. 1982. Purification of an endogenous 68,000-dalton inhibitor of Ca2+-activated neutral protease from chicken skeletal muscle. Biochim. Biophys. Acta 701:216.PubMedGoogle Scholar
  76. Ismail, F. and W. Gevers. 1983. A high-molecular-weight cysteine endopeptidase from rat skeletal muscle. Biochim. Biophys. Acta 742:399.PubMedGoogle Scholar
  77. Janeczko, R. A., R. M. Carriere and J. D. Etlinger. 1985. Endocytosis, proteolysis, and exocytosis of exogenous proteins by cultured myotubes. J. Biol. Chem. 260:7051.PubMedGoogle Scholar
  78. Jones, S. J., E. D. Aberle and M. D. Judge. 1986. Skeletal muscle protein turnover in broiler and layer chicks. J. Anim. Sci. 62:1576.PubMedGoogle Scholar
  79. Kameyama, T. and J. D. Etlinger. 1979. Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature 279:344.PubMedGoogle Scholar
  80. Kar, N. C. and C. M. Pearson. 1976. A calcium-activated neutral protease in normal and dystrophic human muscle. Clin. Chim. Acta 73:293.PubMedGoogle Scholar
  81. Katanuma, N., E. Kominami, K. Kobayashi, Y. Banno. K. Suzuki, K. Chichibu, Y. Hamaguchi and T. Katsunuma. 1975. Studies on new intracellular proteases in various organs of rat. I. Purification and comparison of their properties. Eur. J. Biochem. 52:37.Google Scholar
  82. Kay, J. 1978. Intracellular protein degradation. Biochem. Soc. Trans. 6:789.PubMedGoogle Scholar
  83. Kay, J., R. Heath, B. Dahlmann, L. Kuehn and W. T. Stauber. 1985. Serine proteinases and protein breakdown in muscle. In: E. A. Khairallah, J. S. Bond and J. W. C. Bird (Ed.) Intracellular Protein Catabolism. pp 195–205. Alan R. Liss, New York.Google Scholar
  84. Kleese, W. C, D. E. Goll, T. Edmunds and J. D. Shannon. 1987. Immunofluorescent localization of the Ca2+ -dependent proteinase and its inhibitor in tissues of Crotalus atrox. J. Exp. Zool. 241:277.PubMedGoogle Scholar
  85. Kohn, R. R. 1969. A proteolytic system involving myofibrils and a soluble factor from normal and atrophying muscle. Lab. Invest. 20:202.PubMedGoogle Scholar
  86. Koizumi, T. 1974. Turnover rates of structural proteins of rabbit skeletal muscle. J. Biochem. 76:431.PubMedGoogle Scholar
  87. Kominami, E., J. Tsukahara, Y. Bando and N. Katunuma. 1985. Distribution of cathepsins B and H in rat tissues and peripheral blood cells. J. Biochem. 98:87.PubMedGoogle Scholar
  88. Koszalka, T. R. and L. L. Miller. 1960. Proteolytic activity of rat skeletal muscle. I. Evidence for the existence of an enzyme active optimally at pH 8.5 to 9.0. J. Biol. Chem. 235:665.PubMedGoogle Scholar
  89. Kuehn, L., B. Dahlmann and H. Reinauer. 1984. Identification of four distinct serine proteinase inhibitors in rat skeletal muscle. Biochem. Biophys. Res. Commun. 120:96.PubMedGoogle Scholar
  90. Kuo, T. and A. Bhan. 1980. Studies of a myosin-cleaving protease from dystrophic hamster heart. Biochem. Biophys. Res. Commun. 92:570.PubMedGoogle Scholar
  91. Kuo, T. H., F. Giacomelli, K. Kithier and A. Malhotra. 1981. Biochemical characterization and cellular localization of serine protease in myopathic hamster. J. Mol. Cell. Cardiol. 13:1035.PubMedGoogle Scholar
  92. Lane, R. D., R. L. Mellgren and M. T. Mericle. 1985. Subcellular localization of bovine heart calcium-dependent protease inhibitor. J. Mol. Cell. Cardiol. 17:863.PubMedGoogle Scholar
  93. Leonard, J. P. and M. M. Salpeter. 1979. Agonist-induced myopathy at the neuromuscular junction is mediated by calcium. J. Cell Biol. 82:811.PubMedGoogle Scholar
  94. Lewis, S. E. M., P. Anderson and D. F. Goldspink. 1982. The effects of calcium on protein turnover in skeletal muscles of the rat. Biochem. J. 204:257.PubMedGoogle Scholar
  95. Li, J. B. 1980. Protein synthesis and degradation in skeletal muscle of normal and dystrophic hamsters. Amer. J. Physiol. 239:E401.Google Scholar
  96. Libby, P. and A. L. Goldberg. 1978. Leupeptin, a protease inhibitor, decreases protein degradation in normal and diseased muscles. Science 199:534.PubMedGoogle Scholar
  97. Libby, P. and A. L. Goldberg. 1980. Effects of chymostatin and other proteinase inhibitors on protein breakdown and proteolytic activities in muscle. Biochem. J. 188:213.PubMedGoogle Scholar
  98. Libelius, R., J. O. Josefsson and I. Lundquist. 1979. Endocytosis in chronically denervated mouse skeletal muscle. A biochemical and ultrastructural study with horseradish peroxidase. Neuroscience 4:283.PubMedGoogle Scholar
  99. Lockshin, R. A. 1975. Failure to prevent degeneration of insect muscles with pepstatin. Life Sci. 17:403.PubMedGoogle Scholar
  100. Lockshin, R. A. and J. Beaulaton. 1974a. Programmed cell death. Cytochemical evidence for lysosomes during the normal breakdown of the intersegmental muscles. J. Ultrastruct. Res. 46:43.PubMedGoogle Scholar
  101. Lockshin, R. A. and J. Beaulaton. 1974b. Programmed cell death. Cytochemical appearance of lysosomes when the death of the intersegmental muscles is prevented. J. Ultrastruct. Res. 46:63.PubMedGoogle Scholar
  102. Lorand, L., S. M. Conrad and P. T. Velasco. 1985. Formation of a 55,000-weight cross-linked β-crystallin dimer in the Ca2+-treated lens. A model for cataract. Biochemistry 24:1525.PubMedGoogle Scholar
  103. Low, R. B. and A. L. Goldberg. 1973. Nonuniform rates of turnover of myofibrillar proteins in rat diaphragm. J. Cell Biol. 56:590.PubMedGoogle Scholar
  104. Lowell, B. B., N. B. Ruderman and M. N. Goodman. 1986. Evidence that lysosomes are not involved in the degradation of myofibrillar proteins in rat skeletal muscle. Biochem. J. 234:237.PubMedGoogle Scholar
  105. McCarthy, F. D., W. G. Bergen and D. R. Hawkins. 1983. Muscle protein turnover in cattle of differing genetic backgrounds as measured by urinary NT-methylhistidine excretion. J. Nutr. 113:2455.PubMedGoogle Scholar
  106. McDonald, J. K. and A. J. Barrett. 1986. Mammalian Proteases: A Glossary and Bibliography. Vol. 2. Academic Press, New York.Google Scholar
  107. McGowan, E. B., S. A. Shafiq and A. Stracher. 1976. Delayed degeneration of dystrophic and normal muscle cells cultures treated with pepstatin, leupeptin, and antipain. Exp. Neurol. 50:649.PubMedGoogle Scholar
  108. McKee, E. E., M. G. Clark, C. J. Beinlich, J. A. Lins and H. E. Morgan. 1979. Neutral-alkaline proteases and protein degradation in rat heart. J. Mol. Cell. Cardiol. 11:1033.PubMedGoogle Scholar
  109. McKeran, R. O., D. Halliday and P. Purkiss. 1977. Increased myofibrillar protein catabolism in Duchenne muscular dystrophy measured by 3-methylhistidine excretion in the urine. J. Neurol. Neurosurg. Psychiatry 40:979.PubMedGoogle Scholar
  110. Maki, M., E. Takano, H. Mori, R. Kannagi, T. Murachi and M. Hatanaka. 1987. Repetitive region of calpastatin is a functional unit of the proteinase inhibitor. Biochem. Biophys. Res. Commun. 143:300.PubMedGoogle Scholar
  111. Maron, B. J., V. J. Ferrans and W. C. Roberts. 1975. Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy. Amer. J. Pathol. 79:387.Google Scholar
  112. Martin, A. F., 1981. Turnover of cardiac troponin subunits. Kinetic evidence for precursor pool of troponin I. J. Biol. Chem. 256:964.PubMedGoogle Scholar
  113. Martin, A. F., M. Rabinowitz, R. Blough, G. Prior and R. Zak. 1977. Measurements of half-life of rat cardiac myosin heavy chain with leucyl tRNA used as a precursor pool. J. Biol. Chem. 252:3422.Google Scholar
  114. Martins, C.B. and J. R. Whitaker. 1968. Catheptic enzymes and meat tenderization. I. Purification of cathepsin D and its action on actomyosin. J. Food Sci. 33:59.Google Scholar
  115. Maruyama, K., M. L. Sunde and R. W. Swick. 1978. Growth and muscle protein turnover in the chick. Biochem. J. 176:573.PubMedGoogle Scholar
  116. Matsuishi, M., A. Okitani, Y. Hayakawa, and H. Kato. 1988. Cysteine proteinase inhibitors from rabbit skeletal muscle. Int. J. Biochem. 20:259.Google Scholar
  117. Matsukura, U., A. Okitani, T. Nishimuro and H. Kato. 1981. Mode of degradation of myofibrillar proteins by an endogenous protease, cathepsin L. Biochim. Biophys. Acta 662:41.PubMedGoogle Scholar
  118. Mayer, M., R. Amin and E. Shafrir. 1974. Rat myofibrillar protease: enzyme properties and adaptive changes in conditions of muscle protein degradation. Arch. Biochem. Biophys. 161:20.Google Scholar
  119. Mellgren, R. L. 1980. Canine cardiac calcium-dependent proteases: resolution of two forms with different requirements for calcium. FEBS Lett. 109:129.PubMedGoogle Scholar
  120. Mellgren, R. L. and T. C. Carr. 1983. The protein inhibitor of calcium-dependent proteases: purification from bovine heart and possible mechanisms of regulation. Arch. Biochem. Biophys. 225:779.PubMedGoogle Scholar
  121. Millward, D. J., P. C. Bates, G. J. Laurent and C. C. Lo. 1978. Factors affecting protein break-down in skeletal muscle. In: H. L. Segal and D. J. Doyle (Ed.) Protein Turnover and Lyso-some Function. pp 619–644. Academic Press, New York.Google Scholar
  122. Morkin, E. 1970. Postnatal muscle fiber assembly: localization of newly synthesized myofibrillar proteins. Science 167:1499.PubMedGoogle Scholar
  123. Mulvaney, D. R., R. A. Merkel and W. G. Bergen. 1985. Skeletal muscle protein turnover in young male pigs. J. Nutr. 115:1057.PubMedGoogle Scholar
  124. Murachi, T. and N. Yoshimura. 1985. Intracellular localization of low and high calcium-requiring forms of calpain. In: E. A. Khairallah, J. S. Bond and J. W. C. Bird (Ed.) Intracellular Protein Degradation, pp. 165–174. Alan R. Liss, New York.Google Scholar
  125. Murakami, K. and J. D. Etlinger. 1986. Endogenous inhibitor of nonlysosomal high molecular weight protease and calcium-dependent protease. Proc. Natl. Acad. Sci. USA 83:7588.PubMedGoogle Scholar
  126. Murakami, U. and K. Uchida. 1979. Degradation of rat cardiac myofibrils and myofibrillar proteins by a myosin-cleaving protease. J. Biochem. 86:553.PubMedGoogle Scholar
  127. Nakamura, M., M. Inomata, M. Hayashi, K. Imahori and S. Kawashima. 1985. Purification and characterization of 210,000-dalton inhibitor of calcium-activated neutral protease from rabbit skeletal muscle and its relation to 50,000-dalton inhibitor. J. Biochem. 98:757.PubMedGoogle Scholar
  128. Noguchi, T. and M. Kandatsu. 1976. Some properties of alkaline protease in rat muscle compared with that in peritoneal cavity cells. Agr. Biol. Chem. 40:927.Google Scholar
  129. Nonaka, I., A. Takagi, S. Ishiura, H. Nagase and H. Sugita. 1983. Pathophysiology of muscle fiber necrosis induced by bupivacaine hydrochloride (maraine). Acta Neuropathol. 60:167.PubMedGoogle Scholar
  130. Obinata, T., K. Maruyama, H. Sugita, K. Kohama and S. Ebashi. 1981. Dynamic aspects of structural proteins in vertebrate skeletal muscle. Muscle Nerve 4:456.PubMedGoogle Scholar
  131. Okitani, A., D. E. Goll, M. H. Stromer and R. M. Robson. 1976. Intracellular inhibitor of a Ca2+-activated protease involved in myofibrillar protein turnover. Fed. Proc. 35:1746.Google Scholar
  132. Okitani, A., M. Matsuishi, T. Matsumoto, E. Kamoshida, M. Sato, U. Matsukura, M. Watanabe, H. Kato, and M. Fujimaki. 1988. Purification and some properties of cathepsin B from rabbit skeletal muscle. Eur. J. Biochem. 171:377.PubMedGoogle Scholar
  133. Okitani, A., U. Matsukura, H. Kato, and M. Fujimaki. 1980. Purification and some properties of a myofibrillar protein-degrading protease, cathepsin-L, from rabbit skeletal muscle. J. Biochem. 87:1133.PubMedGoogle Scholar
  134. Okitani, A., T. Matsumoto, Y. Kitamura and H. Kato. 1981a. Purification of cathepsin D from rabbit skeletal muscle and its action towards myofibrils. Biochim. Biophys. Acta 662:202.PubMedGoogle Scholar
  135. Okitani, A., T. Nishimura and H. Kato. 1981b. Characterization of hydrolase H, a new muscle protease possessing aminoendopeptidase activity. Eur. J. Biochem. 115:269.PubMedGoogle Scholar
  136. Orcutt, M. W. and R. B. Young. 1982. Cell differentiation, protein synthesis rate and protein accumulation in muscle cell cultures isolated from embryos of layer and broiler chickens. J. Anim. Sci. 54:769.PubMedGoogle Scholar
  137. O’Steen, W. K., C. R. Shear and K. V. Anderson. 1975. Extraocular muscle degeneration and regeneration after exposure of rats to incandescent radiant energy. J. Cell Sci. 18:157.PubMedGoogle Scholar
  138. Otsuka, Y. and D. E. Goll. 1987. Purification of the Ca2+-dependent proteinase inhibitor from bovine cardiac muscle and its interaction with the millimolar Ca2+-dependent proteinase. J. Biol. Chem. 262:5839.PubMedGoogle Scholar
  139. Otsuka, Y., Y. Kumojima, Y. Ishikawa and E. Kawabara. 1985. Ca2+-activated protease activity in vitamin E-deficient rats. Agr. Biol. Chem. 49:2105.Google Scholar
  140. Otsuka, Y., A. Okitani, R. Katakai and M. Fujimaki. 1976. Purification and properties of an aminopeptidase from rabbit skeletal muscle. Agr. Biol. Chem. 40:2335.Google Scholar
  141. Page, E. and P. I. Polimeni. 1977. Ultrastructural changes in the ischemic zone bordering experimental infarcts in rat left ventricles. Amer. J. Pathol. 86:81.Google Scholar
  142. Paggi. P. and R. J. Lasek. 1984. Degradation of purified neurofilament subunits by calcium-activated neutral protease: characterization of the cleavage products. Neurochem. Int. 6:589.PubMedGoogle Scholar
  143. Pellegrino, C. and C. Franzini. 1963. An electron microscope study of denervation atrophy in red and white skeletal muscle fibers. J. Cell Biol. 17:327.PubMedGoogle Scholar
  144. Pickart, C. M. and I. A. Rose. 1985. Ubiquitin-carboxyl-terminal hydrolase acts on ubiquitin-carboxyl-terminal amides. J. Biol. Chem. 260:7903.PubMedGoogle Scholar
  145. Pontremoli, S. and E. Melloni. 1986. Extralysosomal protein degradation. Annu. Rev. Biochem. 55:455.PubMedGoogle Scholar
  146. Pösö, A. R. and G. E. Mortimore. 1984. Requirement for alanine in the amino acid control of deprivation-induced protein degradation in liver. Proc. Natl. Acad. Sci. USA 81:4270.PubMedGoogle Scholar
  147. Publicover, S. J., C. J. Duncan and J. L. Smith. 1978. The use of A23187 to demonstrate the role of intracellular calcium in causing ultrastructural damage in mammalian muscle. J. Neuro-pathol. Exp. Neurol. 37:544.Google Scholar
  148. Ray, K. and H. Harris. 1985. Purification of neutral lens endopeptidase: close similarity to a neutral proteinase in pituitary. Proc. Natl. Acad. Sci. USA 82:7545.PubMedGoogle Scholar
  149. Reeds, P. J., S. M. Hay, P. M. Dorwood and R. M. Palmer. 1986. Stimulation of muscle growth by clenbuterol: lack of effect on muscle protein biosynthesis. Brit. J. Nutr. 56:249.PubMedGoogle Scholar
  150. Reeves, J. P., R. S. Decker, J. S. Crie and K. Wildenthal. 1981. Intracellular disruption of rat heart lysosomes by leucine methyl ester: effects on protein degradation. Proc. Natl. Acad. Sci. USA 78:4426.PubMedGoogle Scholar
  151. Reville, W. J., D. E. Goll, M. H. Stromer, R. M. Robson and W. R. Dayton. 1976. A Ca2+ -activated protease possibly involved in myofibrillar protein turnover. Subcellular localization of the protease in porcine skeletal muscle. J. Cell Biol. 70:1.PubMedGoogle Scholar
  152. Rodemann, H. P., L. Waxman and A. L. Goldberg. 1982. The stimulation of protein degradation in muscle by Ca2+ is mediated by prostaglandin E2 and does not require the Ca2+-activated protease. J. Biol. Chem. 257:8716.PubMedGoogle Scholar
  153. Rogers, S., R. Wells and M. Rechsteiner. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364.PubMedGoogle Scholar
  154. Rubenstein, N., J. Chi and H. Holtzer. 1976. Coordinated synthesis and degradation of actin and myosin in a variety of myogenic and non-myogenic cells. Exp. Cell Res. 97:387.Google Scholar
  155. Sandoval, I. V. and K. Weber. 1978. Calcium-induced inactivation of microtubule formation in brain extracts. Presence of a calcium-dependent protease acting on polymerization-stimulating microtubule-associated proteins. Eur. J. Biochem. 92:463.PubMedGoogle Scholar
  156. Schiaffino, S. and V. Hanzlikova. 1972. Studies on the effect of denervation in developing muscle. II. The lysosomal system. J. Ultrastruct. Res. 39:1.PubMedGoogle Scholar
  157. Schoenheimer, R. and D. Rittenberg. 1940. The study of intermediary metabolism of animals with the aid of isotopes. Physiol. Rev. 20:218.Google Scholar
  158. Schollmeyer, J. E. 1986a. Role of Ca2+ and Ca2+-activated protease in myoblast fusion. Exp. Cell. Res. 162:411.PubMedGoogle Scholar
  159. Schollmeyer, J. E. 1986b. Possible role of calpain I and calpain II in differentiating muscle. Exp. Cell. Res. 163:413.PubMedGoogle Scholar
  160. Schollmeyer, J. E. 1988. Calpain II involvement in mitosis. Science 240:911.PubMedGoogle Scholar
  161. Schwartz, W. N. and J. W. C. Bird. 1977. Degradation of myofibrillar proteins by cathepsins B and D. Biochem. J. 167:811.PubMedGoogle Scholar
  162. Shii, K., S. Baba, K. Yokono and R. A. Roth. 1985. Covalent linkage of l25I-insulin to a cytosolic insulin-degrading enzyme. J. Biol. Chem. 260:6503.PubMedGoogle Scholar
  163. Smith, A. L. N. 1978. Effects of starvation on vacuolar apparatus of cardiac muscle tissue determined by electron microscopy, marker-enzyme assays, and electrolyte studies. Cytobios 18:111.Google Scholar
  164. Stauber, W. T. and J. W. C. Bird. 1974. S-p zonal fractionation studies of rat skeletal muscle lysosome-rich fractions. Biochim. Biophys. Acta 338:234.Google Scholar
  165. Stauber, W. T. and V. K. Fritz. 1985. Decreased lysosomal protease content of skeletal muscles from streptozotocin-induced diabetic rats: a biochemical and histochemical study. Histochem. J. 17:613.PubMedGoogle Scholar
  166. Stauber, W. T., V. Fritz, B. Dahlmann and H. Reinauer. 1983. Immunohistochemical localization of two proteinases in skeletal muscle. J. Histochem. Cytochem. 31:827.PubMedGoogle Scholar
  167. Stracher. A., E. B. McGowan, A. Hedrych and S. A. Shafiq. 1979. In vivo effect of protease inhibitors in denervation atrophy. Exp. Neurol. 66:611.PubMedGoogle Scholar
  168. Stracher, A., E. B. McGowan and S. A. Shafiq. 1978. Muscular dystrophy: inhibition of degeneration in vivo with protease inhibitors. Science 200:50.PubMedGoogle Scholar
  169. Sugden, P. H. 1980. The effects of calcium ions, ionophore A23187 and inhibition of energy metabolism on protein degradation in the rat diaphragm and epitrochlearis muscles in vitro. Biochem. J. 190:593.PubMedGoogle Scholar
  170. Sugita, H., S. Ishiura, K. Suzuki and K. Imahori. 1980. Ca2+-activated neutral protease and its inhibitors: in vitro effect on intact myofibrils. Muscle Nerve 3:335.PubMedGoogle Scholar
  171. Suzuki, K. 1987. Calcium-activated neutral protease: domain structure and activity regulation. Trends Biochem. Sci. 12:103.Google Scholar
  172. Suzuki, K., S. Tsuji, S. Ishiura, Y. Kimura, S. Kubota and K. Imahori. 1981a. Autolysis of calcium-activated neutral and protease of chicken skeletal muscle. J. Biochem. 90:1787.PubMedGoogle Scholar
  173. Suzuki, K., S. Tsuji, S. Kubota, Y. Kimura and K. Imahori. 1981b. Limited autolysis of Ca2+ -activated neutral protease (CANP) changes its sensitivity to Ca2+ ions. J. Biochem. 90:275.PubMedGoogle Scholar
  174. Szpacenko, A., J. Kay, D. E. Goll and Y. Otsuka. 1981. A different form of the Ca2+-dependent proteinase activated by micromolar levels of Ca2+. In: V. Turk and L.j. Vitale (Ed.) Proteinases and Their Inhibitors: Structure, Function, and Applied Aspects, pp 151–161. Pergamon Press, Elmsford, NY.Google Scholar
  175. Takahashi-Nakamura, M., S. Tsuji, K. Suzuki and K. Imahori. 1981. Purification and characterization of an inhibitor of calcium-activated neutral protease from rabbit skeletal muscle. J. Biochem. 90:1583.PubMedGoogle Scholar
  176. Takano, E., M. Maki, H. Mori, M. Hatanaka, T. Marti, K. Titani, R. Kannagi, T. Oui, and Y. Murachi. 1988. Pig heart calpastatin: identification of repetitive domain structures and anomalous behavior in Polyacrylamide gel electrophoresis. Biochemistry 27:1964.PubMedGoogle Scholar
  177. Tan, F. C., D. E. Goll, and Y. Otsuka. 1988. Some properties of the millimolar Ca2+-dependent proteinase from bovine cardiac muscle. J. Mol. Cell Card. (in press).Google Scholar
  178. Tanaka, K., K. Ii, A. Ichihara, L. Waxman, and A. L. Goldberg. 1986. A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution. J. Biol. Chem. 261:15197.PubMedGoogle Scholar
  179. Tanaka, K., L. Waxman and A. L. Goldberg. 1983. ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin. J. Cell Biol. 96:1580.PubMedGoogle Scholar
  180. Tanaka, K., L. Waxman and A. L. Goldberg. 1984. Vanadate inhibits the ATP-dependent degradation of proteins in reticulocytes without affecting ubiquitin conjugation. J. Biol. Chem. 259:2803.PubMedGoogle Scholar
  181. Tsukahara, T., S. Ishiura, and H. Sugita. 1988. The “ATP-dependent protease” in human eryth-roleukemia (K562) cells is identical to a high-molecular-mass protease, ingensin. Proc. Japan Acad. 64B:72.Google Scholar
  182. Tweedle, C. D., H. Popiela and C.S. Thornton. 1974. Ultrastructure of the development and subsequent breakdown of muscle in aneurogenic limbs (Ambystoma). J. Exp. Zool. 190:155.PubMedGoogle Scholar
  183. van der Westhuyzen, D. R., K. Matsumoto and J. D. Etlinger. 1981. Easily releasable myofilaments from skeletal and cardiac muscles maintained in vitro. Role in myofibrillar assembly and turnover. J. Biol. Chem. 256:11791.Google Scholar
  184. Vernon, B. G. and P. J. Buttery. 1976. Protein turnover in rats treated with Trienbolone acetate. Brit. J. Nutr. 36:575.Google Scholar
  185. Warnes, D. M., F. M. Tomas and F. J. Ballard. 1981. Increased rates of myofibrillar protein breakdown in muscle-wasting diseases. Muscle Nerve 4:62.PubMedGoogle Scholar
  186. Waxman, L. 1981. Calcium-activated proteases in mammalian tissues. Methods Enzymol. 80:664.PubMedGoogle Scholar
  187. Waxman, L., J. M. Fagan and A. L. Goldberg. 1987. Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes. one of which degrades ubiquitin conjugates. J. Biol. Chem. 262:2451.PubMedGoogle Scholar
  188. Waxman, L., J. M. Fagan, K. Tanaka and A. L. Goldberg. 1985. A soluble ATP-dependent system for protein degradation from murine erythroleukemia cells. Evidence for a protease which requires ATP hydrolysis but not ubiquitin. J. Biol. Chem. 260:11994.PubMedGoogle Scholar
  189. West, C. M. and H. Holtzer. 1982. Protein synthesis and degradation in cultured muscle is altered by a phorbol diester tumor promoter. Arch. Biochem. Biophys. 219:335.PubMedGoogle Scholar
  190. Wildenthal, K., J. R. Wakeland, J. M. Ord and J. T. Stull. 1980. Interference with lysosomal proteolysis fails to reduce cardiac myosin degradation. Biochem. Biophys. Res. Commun. 96:793.PubMedGoogle Scholar
  191. Wilk, S. and M. Orlowski. 1983. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J. Neurochem. 40:842.PubMedGoogle Scholar
  192. Wilkinson, K. D., M. K. Urban and A. L. Hass. 1980. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J. Biol. Chem. 255:7529.PubMedGoogle Scholar
  193. Wolitsky, B. A., M. S. Hudecki and H. L. Segal. 1984. Turnover of myofibrillar proteins in cultured muscle cells from normal and dystrophic chick embryos. Biochim. Biophys. Acta 803:106.Google Scholar
  194. Woodbury, R. G., G. M. Gruzenski and D. Lagunoff. 1978. Immunofluorescent localization of a serine protease in rat small intestine. Proc. Natl. Acad. Sci. USA 75:2785.PubMedGoogle Scholar
  195. Wrogemann, K., W. A. K. Hayward and M. C. Blanchaer. 1979. Biochemical aspects of muscle necrosis in hamster dystrophy. Ann. N.Y. Acad. Sci. 317:30.PubMedGoogle Scholar
  196. Yoshikawa, A. and T. Masaki. 1981. Increase in protein synthetic activity in chicken muscular dystrophy. J. Biochem. 90:1775.PubMedGoogle Scholar
  197. Yoshimura, N., T. Murachi, R. Heath, J. Kay, B. Jasani and G. R. Newman. 1986. Immunogold electron-microscopic localization of calpain I in skeletal muscle of rats. Cell Tissue Res. 244:265.PubMedGoogle Scholar
  198. Young, V. R., W. P. Steffee, P. B. Pencharz, J. C. Winterer and N. S. Scrimshaw. 1975. Total human body protein synthesis in relation to protein requirements at various ages. Nature 253:192.PubMedGoogle Scholar
  199. Zak, R., A. F. Martin, G. Prior and M. Rabinowitz. 1977. Comparison of turnover of several myofibrillar proteins and critical evaluation of double isotope method. J. Biol. Chem. 252:3430.PubMedGoogle Scholar
  200. Zeman, R. J., T. Kameyama, K. Matsumoto, P. Bernstein and J. D. Etlinger. 1985. Regulation of protein degradation in muscle by calcium. Evidence for enhanced nonlysosomal proteolysis associated with elevated cystolic calcium. J. Biol. Chem. 260:13619.PubMedGoogle Scholar
  201. Zolfaghari, R., C. R. F. Baker, P. C. Canizaro, A. Amirgholami and F. J. Behal. 1987. A high-molecular-mass neutral endopeptidase-24.5 from human lung. Biochem. J. 241:129.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Darrel E. Goll
    • 1
  • William C. Kleese
    • 1
  • Adam Szpacenko
    • 1
  1. 1.Muscle Biology GroupUniversity of ArizonaTucsonUSA

Personalised recommendations