Regulation of Myofibrillar Protein Gene Expression

  • Holly E. Richter
  • Ronald R. Young
  • Debra M. Moriarity


The contraction of skeletal and cardiac muscle is the result of a physiological conversion of chemical energy into mechanical energy, which takes place in a highly ordered three dimensional matrix of myofibrillar proteins. The basic unit of the contractile process in striated muscle is the sarcomere (Squire, 1981), which is composed of thick and thin filaments tandemly arranged in the myofibril. The sarcomere is composed of 10–15 myofibrillar proteins, but of these only myosin, actin, troponin, and tropomyosin participate directly in the contractile event. Regulation of expression of the myofibrillar protein genes seems to occur at the transcriptional level, with some of their RNA products exhibiting alternative exon splicing in the generation of multiple protein isoforms. Some of these primary RNA transcripts are also generated by differential initiation at alternate promoters (Nabeshima et al., 1984; Periasamy et al., 1984a; Robert et al., 1984). Muscle protein diversity can further be manifested by termination of primary transcripts at alternative 3’ untranslated sequences (Basi et al., 1984; Ruiz-Opazo et al., 1985; Bernstein et al., 1986; Rozek and Davidson, 1986). Generation of different protein forms by alternative splicing of identical primary RNA transcripts must involve trans-acting factors, some of which are tissue specific (Nadal-Ginard et al., 1987). A cis-acting factor refers to a DNA locus that affects the activity of DNA sequences on its own molecule of DNA, whereas a trans-acting factor refers to a diffusible product able to act on all receptive sites in the cell.


Thyroid Hormone Myosin Heavy Chain Myosin Light Chain Myofibrillar Protein Differential Splice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acker, M. A., R. L. Hammond, J. D. Mannion, S. Salmons and L. W. Stephenson. 1987. Skeletal muscle as the potential power source for a cardiovascular pump: assessment in vivo. Science 236:324.PubMedCrossRefGoogle Scholar
  2. Barany, M. 1967. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50:197.PubMedCrossRefGoogle Scholar
  3. Basi, G. S., M. Boardman and R. V. Storti. 1984. Alternative splicing of a Dorsophila tropomyosin gene generates muscle tropomyosin isoforms with different carboxy-terminal ends. Mol. Cell. Biol. 4:2828.PubMedGoogle Scholar
  4. Bernstein, S. I., C. J. Hansen, K. D. Becker, D. R. Wassenberg, II, E. S. Roche, J. J. Donady and C. P. Emerson, Jr. 1986. Alternative RNA splicing generates transcripts encoding a thorax-specific isoform of Drosophila melanogaster myosin heavy chain. Mol. Cell. Biol. 6:2511.PubMedGoogle Scholar
  5. Bernstein, S. I., K. Mogami, J. J. Donady and C. P. Emerson, Jr. 1983. Drosophila muscle myosin heavy chain encoded by a single gene in a cluster of muscle mutations. Nature 302:393.PubMedCrossRefGoogle Scholar
  6. Blau, H. M., G. K. Pavlath, E. C. Hardeman, C. P. Chiu, L. Silberstein, S. G. Webster, S. C. Miller and C. Webster. 1985. Plasticity of the differentiated state. Science 230:758.PubMedCrossRefGoogle Scholar
  7. Breitbart, R. E., H. T. Nguyen, R. M. Medford, A. T. Destree, V. Mahdavi and B. Nadal-Ginard. 1985. Intricate combinatorial patterns on exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell 41:67.PubMedCrossRefGoogle Scholar
  8. Brown, W. E., S. Salmons and R. G. Whalen. 1983. The sequential replacement of myosin subunit isoforms during muscle type transformation induced by long term electrical stimulation. J. Biol. Chem. 258:14686.PubMedGoogle Scholar
  9. Breitbart, R. and B. Nadal-Ginard. 1987. Developmentally induced, muscle specific trans factors control the differential splicing of alternative and constitutive troponin-T exons. Cell 49:793.PubMedCrossRefGoogle Scholar
  10. Buckingham, M. E. 1985. Actin and myosin multigene families: their expression during the formation of skeletal muscle. Essays Biochem. 20:77.PubMedGoogle Scholar
  11. Buckingham, M., S. Alonso, P. Barton, A. Cohen, P. Daubas, I. Garner, B. Robert and A. Weydert. 1986. Actin and myosin multigene families: their expression during the formation and maturation of striated muscle. Amer. J. Med. Genet. 25:623.CrossRefGoogle Scholar
  12. Buckingham, M., S. Alonso, G. Bugaisky, P. Barton, A. Cohen, P. Daubas, A. Minty, B. Robert and A. Weydert. 1985. The actin and myosin multigene families. Adv. Exp. Med. 182:333.Google Scholar
  13. Catanzaro, D. F. and B. J. Morris. 1986. Human cardiac myosin heavy chain genes. Isolation of a genomic clone and its characterization and of a second unique clone also present in the human genome. Circ. Res. 59:655.PubMedGoogle Scholar
  14. Cerny, L. C. and E. Bandman. 1986. Contractile activity is required for the expression of neonatal myosin heavy chain in embryonic chick pectoral muscle cultures. J. Cell Biol. 103:2153.PubMedCrossRefGoogle Scholar
  15. Chacko, S., M. A. Conti and R. S. Adelstein. 1977. Effect of phosphorylation of smooth muscle myosin on actin-activation and Ca2+ regulation. Proc. Natl. Acad. Sci. USA 74:129.PubMedCrossRefGoogle Scholar
  16. Chizzonite, R. A., A. W. Everett, W. A. Clark, S. Jakovcic, M. Rabinowitz and R. Zak. 1982. Isolation and characterization of two molecular variants of myosin heavy chain from rabbit ventricle. J. Biol. Chem. 257:2056.PubMedGoogle Scholar
  17. Clark, W. A., R. A. Chizzonite, A. W. Everett, M. Rabinowitz and R. Zak. 1982. Species correlations between cardiac isomyosins. J. Biol. Chem. 257:5449.PubMedGoogle Scholar
  18. Czosnek, H., U. Nudel, Y. Mayer, P. E. Barker, D. D. Pravtcheva, F. R. Ruddle and D. Yaffe. 1983. The genes coding for the cardiac muscle actin, the skeletal muscle actin and the cytoplasmic B-actin are located on three different mouse chromosomes. EMBO J. 2:1977.PubMedGoogle Scholar
  19. Fitts, R. H., J. P. Troup, F. A. Witzmann and J. O. Holloszy. 1984. The effect of ageing and exercise on skeletal muscle function. Mech. Ageing Dev. 27:161.PubMedCrossRefGoogle Scholar
  20. Frank, G. and A. G. Weeds. 1974. The amino acid sequence of the alkali light chains of rabbit skeletal muscle myosin. Eur. J. Biochem. 44:317.PubMedCrossRefGoogle Scholar
  21. Friedman, D. J., P. K. Umeda, A. M. Sinha, H. J. Hsu, S. Jakovcic and M. Rabinowitz. 1984. Isolation and characterization of genomic clones specifying rabbit α and ß ventricular myosin heavy chains. Proc. Natl. Acad. Sci. USA 81:3044.Google Scholar
  22. Gillies, S. D., S. L. Morrison, V. T. Oi and S. Tonegawa. 1983. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33:717.PubMedCrossRefGoogle Scholar
  23. Gorman, C. M., L. F. Moffat and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044.PubMedGoogle Scholar
  24. Gregory, P., R. B. Low and W. S. Stirewalt. 1986. Changes in skeletal-muscle myosin isoenzymes with hypertrophy and exercise. Biochem. J. 238:55.PubMedGoogle Scholar
  25. Gunning, P., P. Ponte, H. Blau and L. Kedes. 1983. α-Skeletal and cardiac actin genes are coexpressed in adult human skeletal muscle and heart. Mol. Cell. Biol. 3:1985.PubMedGoogle Scholar
  26. Gunning, P., P. Ponte, L. Kedes, R. Eddy and T. Shows. 1984. Chromosomal location of the co-expressed human skeletal and cardiac actin genes. Proc. Natl. Acad. Sci. USA 81:1813.PubMedCrossRefGoogle Scholar
  27. Gustafson, T. A., B. E. Markham and E. Morkin. 1986. Effects of thyroid hormone on α-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: measure-ment of mRNA content using synthetic oligonucleotide probes. Circ. Res. 59:194.PubMedGoogle Scholar
  28. Hammer, J. A., E. D. Korn and B. M. Paterson. 1986. Isolation of a non-muscle myosin heavy chain gene from Acanihamoeba. J. Biol. Chem. 261:1949.PubMedGoogle Scholar
  29. Hastings, K. E. M. and C. P. Emerson, Jr. 1982. cDNA clone analysis of six co-regulated mRNAs encoding skeletal muscle contractile proteins. Proc. Natl. Acad. Sci. USA 79:1553.PubMedCrossRefGoogle Scholar
  30. Helfman, D. M., S. Cheley, E. Kuismanen, L. A. Finn and Y. Yamawaki-Kataoka. 1986. Non-muscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation. Mol. Cell. Biol. 6:3582.PubMedGoogle Scholar
  31. Hoh, J., P. McCrath and P. Hale. 1977. Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thryoxine replacement. J. Mol. Cell. Cardiol. 10:1053.CrossRefGoogle Scholar
  32. Izumo, S., A. M. Lompre, R. Matsuoka, G. Koren, K. Schwartz, B. Nadal-Ginard and V. Mahdavi. 1987. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. J. Clin. Invest. 79:970.PubMedCrossRefGoogle Scholar
  33. Izumo, S., B. Nadal-Ginard and V. Mahdavi. 1986. All members of the MHC multigene family respond to thyroid hormone in a highly tissue-specific manner. Science 231:597.PubMedCrossRefGoogle Scholar
  34. Kavinsky, C. J., P. K. Umeda, A. M. Sinha, M. Elzing, S. W. Tong, R. Zak, S. Jackovcic and M. Rabinowitz. 1983. Cloned mRNA sequences for two types of embryonic myosin heavy chains from chick skeletal muscle. J. Biol. Chem. 258:5196.PubMedGoogle Scholar
  35. Konieczny, S. F. and C. P. Emerson, Jr. 1985. Differentiation, not determination, regulates muscle gene activation: transfection of troponin I genes into multipotential and muscle lineages of 10T1/2 cells. Mol. Cell. Biol. 5:2423.PubMedGoogle Scholar
  36. Leinwand, L. A., R. E. K. Fournier, B. Nadal-Ginard and T. Shows. 1983a. Multigene family for sarcomeric myosin heavy chain in mouse and human DNA: localization on a single chromosome. Science 221:766.PubMedCrossRefGoogle Scholar
  37. Leinwand, L. A., L. Saez, E. McNally and B. Nadal-Ginard. 1983b. Isolation and characterization of human myosin heavy chain genes. Proc. Natl. Acad. Sci. USA 80:3716.PubMedCrossRefGoogle Scholar
  38. Lichter, P., P. K. Umeda, J. E. Levin and H. P. Vosberg. 1986. Partial characterization of the human β-myosin heavy-chain gene which is expressed in heart and skeletal muscle. Eur. J. Biochem. 160:419.PubMedCrossRefGoogle Scholar
  39. Lompre, A. M., J. J. Mercadier, C. Wisnewsky, P. Bouveret, C. Pantaloni, A. D’Albis and K. Schwartz. 1981. Species-and age-dependent changes in the relative amounts of cardiac myosin isoenzymes in mammals. Dev. Biol. 84:286.PubMedCrossRefGoogle Scholar
  40. Lompre, A. M., B. Nadal-Ginard and V. Mahdavi. 1984. Expression of the cardiac ventricular α- and β-myosin heavy chain genes is developmentally and hormonally regulated. J. Biol. Chem. 259:6437.PubMedGoogle Scholar
  41. Lowey, S. 1986. Cardiac and skeletal muscle myosin polymorphism. Med. Sci. Sports Exer. 18:284.CrossRefGoogle Scholar
  42. Lowey, S. and D. Risby. 1971. Light chains from fast and slow muscle myosins. Nature 234:81.PubMedCrossRefGoogle Scholar
  43. MacLeod, A. R., K. Talbot, F. C. Reinach, C. Houlker, L. B. Smillie, C. S. Giometti and N. L. Anderson. 1986. Molecular characterization of human cytoskeletal tropomyosins. In: C. P. Emerson, D. Fischman, B. Nadal-Ginard and M. A. Q. Siddiqui (Ed.) Molecular Biology of Muscle Development, pp 445–455. Alan R. Liss, Inc., New York.Google Scholar
  44. Mahdavi, V., A. P. Chambers and B. Nadal-Ginard. 1984. Cardiac alpha and beta myosin heavy chain genes are organized in tandem. Proc. Natl. Acad. Sci. USA 81:2626.PubMedCrossRefGoogle Scholar
  45. Mahdavi, V., M. Periasamy and B. Nadal-Ginard. 1982. Molecular characterization of two myosin heavy chain genes expressed in the adult heart. Nature 297:659.PubMedCrossRefGoogle Scholar
  46. Mahdavi, V., E. E. Strehler, M. Periasamy, D. F. Wieczorek, S. Izumo and B. Nadal-Ginard. 1986. Sarcomeric myosin heavy chain gene family: organization and pattern of expression. Med. Sci. Sports Exer. 18:299.CrossRefGoogle Scholar
  47. Mak, A. S., W. G. Lewis and L. B. Smillie. 1979. Amino acid sequence of rabbit skeletal ß and cardiac tropomyosins. FEBS Lett. 105:232.PubMedCrossRefGoogle Scholar
  48. Mercadier, J., A. Lompre, C. Wisnewsky, J. Samuel, J. Bercovice, B. Swynghedauw and K Schwartz. 1981. Myosin isozyme changes in several models of rat cardiac hypertrophy. Circ. Res. 49:525.PubMedGoogle Scholar
  49. Miller, D. M., F. E. Stockdale and J. Karn. 1986 Immunological identification of the genes encoding the four myosin heavy chain isoforms of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 83:2305.PubMedCrossRefGoogle Scholar
  50. Minty, A. J., S. Alonso, M. Caravetti and M. E. Buckingham. 1982. A fetal skeletal muscle actin mRNA in the mouse, and its identity with cardiac actin mRNA. Cell 30:185.PubMedCrossRefGoogle Scholar
  51. Minty, A., H. Blau and L. Kedes. 1986. Two-level regulation of cardiac actin gene transcription: muscle-specific modulating factors can accumulate before gene activation. Mol. Cell. Biol. 6:2137.PubMedGoogle Scholar
  52. Minty, A. and L. Kedes. 1986. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionary conserved repeated motif. Mol. Cell. Biol. 6:2125.PubMedGoogle Scholar
  53. Moriarity, D. M., K. J. Barringer, J. B. Dodgson, H. E. Richter and R. B. Young. 1987. Genomic clones encoding chicken myosin heavy-chain genes. DNA 6:91.PubMedCrossRefGoogle Scholar
  54. Morkin, E., I. L. Flink and S. Goldman. 1983. Biochemical and physiologic effects of thyroid hormone on cardiac performance. Prog. Cardiovasc. Dis. 25:435.PubMedCrossRefGoogle Scholar
  55. Nebeshima, Y., Y. Kurijama-Fujii, M. Muramatsu and K. Ogata. 1984. Alternative transcription and two modes of splicing result in two myosin light chains from one gene. Nature 308:333.CrossRefGoogle Scholar
  56. Nadal-Ginard, B., R. E. Breitbart, A. Andreadis, M. Gallego, Y. T. Yu, G. Koren, G. White, P. Bouvagnet and V. Mahdavi. 1987 Generation of complex contractile protein phenotypes through promoter selection and alternative pre-mRNA splicing. ICSU Short Rep. 7:62.Google Scholar
  57. Nadal-Ginard, B., R. E. Breitbart, E. E. Strehler, N. Ruiz-Opazo, M. Periasamy and V. Mahdavi. 1986. Alternative splicing: a common mechanism for the generation of contractile protein diversity from single genes. In: C. P. Emerson, D. Fischman, B. Nadal-Ginard and M. A. Q. Siddiqui (Ed.) Molecular Biology of Muscle Development, pp. 387–410. Alan R. Liss, Inc., New York.Google Scholar
  58. Nadal-Ginard, B., R. M Medford, H. T. Nguyen, M. Periasamy, R. M. Wydro, D. Hornig, R. Gabits, L. I. Garfinkel, D. Weiczorek, E. Bekesi and V. Mahdavi. 1982. Structure and regulation of a mammalian sarcomeric myosin heavy chain gene. In: M. L. Pearson and H. F. Esptein (Ed.) Muscle Development: Molecular and Cellular Control, pp 143–168.Google Scholar
  59. Nadal-Ginard, B., R. M. Medford, H. T. Nguyen, M. Periasamy, R. M. Wydro, D. Hornig, R. Gabits, L. I. Garfinkel, D. Weiczorek, E. Bekesi and V. Mahdavi Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  60. NY. Nikovits, W., Jr., G. Kuncio and C. P. Ordahl. 1986. The chicken fast skeletal troponin I gene: exon organization and sequence. Nucleic Acids Res. 14:3377.PubMedCrossRefGoogle Scholar
  61. Oppenheimer, J. H. and H. H. Samuels (Ed.). 1983. Molecular Basis of Thyroid Hormone Action. Academic Press, New York.Google Scholar
  62. Periasamy, M., E. E. Strehler, L. I. Garfinkel, R. M. Gubits, N. Ruiz-Opazo and B. Nadal-Ginard. 1984a. Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing. J. Biol. Chem. 259:13595.PubMedGoogle Scholar
  63. Periasamy, M., D. F. Weiczorek and B. Nadal-Ginard. 1984b. Characterization of a developmenttally regulated perinatal myosin heavy-chain gene expressed in skeletal muscle. J. Biol. Chem. 259:13573.PubMedGoogle Scholar
  64. Periasamy, M., R. M. Wydro, M. A. Strehler-Page, E. E. Strehler and B. Nadal-Ginard. 1985. Characterization of cDNA and genomic sequences corresponding to an embryonic myosin heavy chain. J. Biol. Chem. 260:15856.PubMedGoogle Scholar
  65. Queen, C. and D. Baltimore. 1983. Immunoglobulin gene transcription is activated by downstream sequence elements. Cell 33:741.PubMedCrossRefGoogle Scholar
  66. Richter, H. E., R. B. Young, J. R. Hudson, Jr. and D. M. Moriarity. 1987. Screening of a bovine genomic library for myosin heavy chain genes. J. Anim. Sci. 64:607.PubMedGoogle Scholar
  67. Robbins, J., G. A. Freyer, D. Chisholm and T. C. Gilliam. 1982. Isolation of multiple genomic sequences coding for chicken myosin heavy chain protein. J. Biol. Chem. 257:549.PubMedGoogle Scholar
  68. Robert, B., P. Daubas, M. A. Akimenko, A. Cohen, I. Garner, J. L. Guenet and M. Buckingham. 1984. A single locus in the mouse encodes both myosin light chains 1 and 3, a second locus corresponds to a related pseudogene. Cell 39:129.PubMedCrossRefGoogle Scholar
  69. Rozek, C. E. and N. Davidson. 1986. Differential processing of RNA transcribed from the single-copy Drosophila myosin heavy chain gene produces four mRNAs that encode two polypeptides. Proc. Natl. Acad. Sci. USA 83:2128.PubMedCrossRefGoogle Scholar
  70. Ruiz-Opazo, N., J. Weinberger and B. Nadal-Ginard. 1983. Different tissue specific forms of α-tropomyosin encoded by the same gene. J. Cell Biol. 97:329a.Google Scholar
  71. Ruiz-Opazo, N., J. Weinberger and B. Nadal-Ginard. 1985. One smooth and two striated, skeletal and cardiac, α-tropomyosin isoforms are encoded by the same gene. Nature 315:67.PubMedCrossRefGoogle Scholar
  72. Saad, A. D., T. Obinata and D. A. Fischman. 1987. Immunochemical analysis of protein isoforms in thick myofilaments of regenerating skeletal muscle. Dev. Biol. 119:336.PubMedCrossRefGoogle Scholar
  73. Saez, L. and L. A. Leinwand. 1986a. Characterization of diverse forms of myosin heavy chain expressed in adult human skeletal muscle. Nucleic Acids Res. 14:2951.PubMedCrossRefGoogle Scholar
  74. Saez, L. J. and L. A. Leinwand. 1986b. Cloning and characterization of myosin cDNAs in adult human skeletal muscle. In: C. P. Emerson, D. Fischman, B. Nadal-Ginard and M. A. Q. Siddiqui (Ed.) Molecular Biology of Muscle Development, pp 263–272. Alan R. Liss, Inc., New York.Google Scholar
  75. Schwartz, K., A. M. Lompre, P. Bouveret, C. Wisnewsky and R. G. Whalen. 1982. Comparisons of rat cardiac myosins at fetal stages in young animals and in hypothyroid adults. J. Biol. Chem. 257:14412.PubMedGoogle Scholar
  76. Seiler-Tuyns, A., J. D. Eldridge and B. M. Paterson. 1984. Expression and regulation of chicken actin genes introduced into mouse myogenic and nonmyogenic cells. Proc. Natl. Acad. Sci. USA 81:2980.PubMedCrossRefGoogle Scholar
  77. Singer, R. H. and G. Kessler-Icekson. 1978. Stability of polyadenylated RNA in differentiating myogenic cells. Eur. J. Biochem. 88:395.PubMedCrossRefGoogle Scholar
  78. Sinha, A. M., P. K. Umeda. C. J. Kavinsky, C. Rajamanickam, H. J. Hsu, S. Jakovcic and M. Rabinowitz. 1982. Molecular cloning of mRNA sequences for cardiac α- and β-form myosin heavy chains: expression in ventricles of normal, hypothyroid and thyrotoxic rabbits. Proc. Natl. Acad. Sci. USA 79:5847.PubMedCrossRefGoogle Scholar
  79. Sivaramakrishnan, M. and M. Burke. 1982. The free heavy chain of vertebrate skeletal myosin subfragment I shows full enzymatic activity. J. Biol. Chem. 257:1102.PubMedGoogle Scholar
  80. Sodek, J., R. S. Hodges and L. B. Smillie. 1978. Amino acid sequence of rabbit skeletal muscle α-tropomyosin: the COOH terminal half (residue 142–284). J. Biol. Chem. 253:1129.PubMedGoogle Scholar
  81. Squire, J. 1981. The Structural Basis of Muscular Contraction. Plenum Press, New York.CrossRefGoogle Scholar
  82. Strehler, E. E., V. Mahdavi, M. Periasamy and B. Nadal-Ginard. 1985. Intron positions are con-served in the 5’ end region of myosin heavy chain genes. J. Biol. Chem. 260:4680.Google Scholar
  83. Strehler, E. E., M. A. Strehler-Page, J. C. Perriard, M. Periasamy and B. Nadal-Ginard. 1986. Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. Evidence against introndependent evolution of the rod. J. Mol. Biol. 190:291.PubMedCrossRefGoogle Scholar
  84. Szent-Gyorgyi, A. G., E. M. Szentkiralyi and J. Kendrick-Jones. 1973. The light chains of scallop myosin as regulatory subunits. J. Mol. Biol. 74:179.PubMedCrossRefGoogle Scholar
  85. Tsuchimochi, H., M. Kuro-O, F. Takaku, K. Yoshida, M. Kawana, S. I. Kimata and Y. Yazaki. 1986. Expression of myosin isozymes during the developmental stage and their redistribution induced by pressure overload. Jpn. Circ. J. 50:1044.PubMedCrossRefGoogle Scholar
  86. Vandekerckhove, J. and K. Weber. 1979. The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. Differentiation 14:123.PubMedCrossRefGoogle Scholar
  87. Wagner, P. D. and E. Giniger. 1981. Hydrolysis of ATP and reversible binding to Factin by myosin heavy chains free of all light chains. Nature 292:560.PubMedCrossRefGoogle Scholar
  88. Warrick, H. M., A. DeLozanne, L. A. Leinwand and J. A. Spudich. 1986. Conserved protein domains in a myosin heavy chain gene from Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 83:9433.PubMedCrossRefGoogle Scholar
  89. Weydert, A., P. Daubas, M. Caravetti, A. Minty, G. Bugaisky, A. Cohen, B. Robert and M. Buckingham. 1983. Sequential accumulation of mRNAs encoding different myosin heavy chain isoforms during skeletal muscle development in vivo detected with a recombinant plasmid identified as coding for an adult fast myosin heavy chain from mouse skeletal muscle. J. Biol. Chem. 258:13867.PubMedGoogle Scholar
  90. Weydert, A., P. Daubas, I. Lazaridis, P. Barton, I. Garner, D. P. Leader, F. Bonhomme, J. Catalan, D. Simon, J. L. Guenet, F. Gros and M. E. Buckingham. 1985. Genes for skeletal muscle myosin heavy chain are clustered and are not located on the same mouse chromosome as a cardiac myosin heavy chain gene. Proc. Natl. Acad. Sci. USA 82:7183.PubMedCrossRefGoogle Scholar
  91. Whalen, R. G., G. S. Butler-Browne, S. M. Sell, K. Schwartz, P. Bouveret and I. Pinset-Har-strom. 1980. Transitions in myosin isoforms during muscle development. J. Muscle. Res. Cell Motility 1:473.Google Scholar
  92. Whalen, R. C. 1985. Myosin isoenzymes as molecular markers for muscle physiology. J. Exp. Biol. 115:43.PubMedGoogle Scholar
  93. Wieczorek, D. F., M. Periasamy, G. S. Butler-Browne, R. G. Whalen and B. Nadal-Ginard. 1985. Coexpression of multiple myosin heavy chain genes, in addition to a tissue-specific one, in extraocular musculature. J. Cell Biol. 101:618.PubMedCrossRefGoogle Scholar
  94. Wilkinson, J. M., I. M. Bird, G. K. Dhoot, B. A. Levine and R. D. Taylor. 1986. Expression of troponin T variants in chicken striated muscle. In: C. P. Emerson, D. Fischman, B. Nadal-Ginard and M. A. Q. Siddiqui (Ed.) Molecular Biology of Muscle Development, pp 423 – 436. Alan R. Liss, Inc., New York.Google Scholar
  95. Wilkinson, J. M., A. J. G. Moir and M. D. Waterfield. 1984. The expression of multiple forms of troponin T in chicken-fast-skeletal muscle may result from differential splicing of a single gene. Eur. J. Biochem. 143:47.PubMedCrossRefGoogle Scholar
  96. Wydro, R. M., H. T. Nguyen, R. M. Gubits and B. Nadal-Ginard. 1983. Characterization of sarcomeric myosin heavy chain genes. J. Biol. Chem. 258:670.PubMedGoogle Scholar
  97. Young, R. B., D. M. Moriarity and C. E. McGee. 1986. Structural analysis of myosin genes using recombinant DNA techniques. J. Anim. Sci. 63:259.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Holly E. Richter
    • 1
  • Ronald R. Young
    • 1
  • Debra M. Moriarity
    • 1
  1. 1.Department of Biological SciencesUniversity of AlabamaHuntsvilleUSA

Personalised recommendations