Skip to main content

Regulation of Myofibrillar Protein Gene Expression

  • Chapter
Animal Growth Regulation

Abstract

The contraction of skeletal and cardiac muscle is the result of a physiological conversion of chemical energy into mechanical energy, which takes place in a highly ordered three dimensional matrix of myofibrillar proteins. The basic unit of the contractile process in striated muscle is the sarcomere (Squire, 1981), which is composed of thick and thin filaments tandemly arranged in the myofibril. The sarcomere is composed of 10–15 myofibrillar proteins, but of these only myosin, actin, troponin, and tropomyosin participate directly in the contractile event. Regulation of expression of the myofibrillar protein genes seems to occur at the transcriptional level, with some of their RNA products exhibiting alternative exon splicing in the generation of multiple protein isoforms. Some of these primary RNA transcripts are also generated by differential initiation at alternate promoters (Nabeshima et al., 1984; Periasamy et al., 1984a; Robert et al., 1984). Muscle protein diversity can further be manifested by termination of primary transcripts at alternative 3’ untranslated sequences (Basi et al., 1984; Ruiz-Opazo et al., 1985; Bernstein et al., 1986; Rozek and Davidson, 1986). Generation of different protein forms by alternative splicing of identical primary RNA transcripts must involve trans-acting factors, some of which are tissue specific (Nadal-Ginard et al., 1987). A cis-acting factor refers to a DNA locus that affects the activity of DNA sequences on its own molecule of DNA, whereas a trans-acting factor refers to a diffusible product able to act on all receptive sites in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker, M. A., R. L. Hammond, J. D. Mannion, S. Salmons and L. W. Stephenson. 1987. Skeletal muscle as the potential power source for a cardiovascular pump: assessment in vivo. Science 236:324.

    Article  PubMed  CAS  Google Scholar 

  • Barany, M. 1967. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50:197.

    Article  PubMed  Google Scholar 

  • Basi, G. S., M. Boardman and R. V. Storti. 1984. Alternative splicing of a Dorsophila tropomyosin gene generates muscle tropomyosin isoforms with different carboxy-terminal ends. Mol. Cell. Biol. 4:2828.

    PubMed  CAS  Google Scholar 

  • Bernstein, S. I., C. J. Hansen, K. D. Becker, D. R. Wassenberg, II, E. S. Roche, J. J. Donady and C. P. Emerson, Jr. 1986. Alternative RNA splicing generates transcripts encoding a thorax-specific isoform of Drosophila melanogaster myosin heavy chain. Mol. Cell. Biol. 6:2511.

    PubMed  CAS  Google Scholar 

  • Bernstein, S. I., K. Mogami, J. J. Donady and C. P. Emerson, Jr. 1983. Drosophila muscle myosin heavy chain encoded by a single gene in a cluster of muscle mutations. Nature 302:393.

    Article  PubMed  CAS  Google Scholar 

  • Blau, H. M., G. K. Pavlath, E. C. Hardeman, C. P. Chiu, L. Silberstein, S. G. Webster, S. C. Miller and C. Webster. 1985. Plasticity of the differentiated state. Science 230:758.

    Article  PubMed  CAS  Google Scholar 

  • Breitbart, R. E., H. T. Nguyen, R. M. Medford, A. T. Destree, V. Mahdavi and B. Nadal-Ginard. 1985. Intricate combinatorial patterns on exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell 41:67.

    Article  PubMed  CAS  Google Scholar 

  • Brown, W. E., S. Salmons and R. G. Whalen. 1983. The sequential replacement of myosin subunit isoforms during muscle type transformation induced by long term electrical stimulation. J. Biol. Chem. 258:14686.

    PubMed  CAS  Google Scholar 

  • Breitbart, R. and B. Nadal-Ginard. 1987. Developmentally induced, muscle specific trans factors control the differential splicing of alternative and constitutive troponin-T exons. Cell 49:793.

    Article  PubMed  CAS  Google Scholar 

  • Buckingham, M. E. 1985. Actin and myosin multigene families: their expression during the formation of skeletal muscle. Essays Biochem. 20:77.

    PubMed  CAS  Google Scholar 

  • Buckingham, M., S. Alonso, P. Barton, A. Cohen, P. Daubas, I. Garner, B. Robert and A. Weydert. 1986. Actin and myosin multigene families: their expression during the formation and maturation of striated muscle. Amer. J. Med. Genet. 25:623.

    Article  CAS  Google Scholar 

  • Buckingham, M., S. Alonso, G. Bugaisky, P. Barton, A. Cohen, P. Daubas, A. Minty, B. Robert and A. Weydert. 1985. The actin and myosin multigene families. Adv. Exp. Med. 182:333.

    CAS  Google Scholar 

  • Catanzaro, D. F. and B. J. Morris. 1986. Human cardiac myosin heavy chain genes. Isolation of a genomic clone and its characterization and of a second unique clone also present in the human genome. Circ. Res. 59:655.

    PubMed  CAS  Google Scholar 

  • Cerny, L. C. and E. Bandman. 1986. Contractile activity is required for the expression of neonatal myosin heavy chain in embryonic chick pectoral muscle cultures. J. Cell Biol. 103:2153.

    Article  PubMed  CAS  Google Scholar 

  • Chacko, S., M. A. Conti and R. S. Adelstein. 1977. Effect of phosphorylation of smooth muscle myosin on actin-activation and Ca2+ regulation. Proc. Natl. Acad. Sci. USA 74:129.

    Article  PubMed  CAS  Google Scholar 

  • Chizzonite, R. A., A. W. Everett, W. A. Clark, S. Jakovcic, M. Rabinowitz and R. Zak. 1982. Isolation and characterization of two molecular variants of myosin heavy chain from rabbit ventricle. J. Biol. Chem. 257:2056.

    PubMed  CAS  Google Scholar 

  • Clark, W. A., R. A. Chizzonite, A. W. Everett, M. Rabinowitz and R. Zak. 1982. Species correlations between cardiac isomyosins. J. Biol. Chem. 257:5449.

    PubMed  CAS  Google Scholar 

  • Czosnek, H., U. Nudel, Y. Mayer, P. E. Barker, D. D. Pravtcheva, F. R. Ruddle and D. Yaffe. 1983. The genes coding for the cardiac muscle actin, the skeletal muscle actin and the cytoplasmic B-actin are located on three different mouse chromosomes. EMBO J. 2:1977.

    PubMed  CAS  Google Scholar 

  • Fitts, R. H., J. P. Troup, F. A. Witzmann and J. O. Holloszy. 1984. The effect of ageing and exercise on skeletal muscle function. Mech. Ageing Dev. 27:161.

    Article  PubMed  CAS  Google Scholar 

  • Frank, G. and A. G. Weeds. 1974. The amino acid sequence of the alkali light chains of rabbit skeletal muscle myosin. Eur. J. Biochem. 44:317.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, D. J., P. K. Umeda, A. M. Sinha, H. J. Hsu, S. Jakovcic and M. Rabinowitz. 1984. Isolation and characterization of genomic clones specifying rabbit α and ß ventricular myosin heavy chains. Proc. Natl. Acad. Sci. USA 81:3044.

    Google Scholar 

  • Gillies, S. D., S. L. Morrison, V. T. Oi and S. Tonegawa. 1983. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33:717.

    Article  PubMed  CAS  Google Scholar 

  • Gorman, C. M., L. F. Moffat and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044.

    PubMed  CAS  Google Scholar 

  • Gregory, P., R. B. Low and W. S. Stirewalt. 1986. Changes in skeletal-muscle myosin isoenzymes with hypertrophy and exercise. Biochem. J. 238:55.

    PubMed  CAS  Google Scholar 

  • Gunning, P., P. Ponte, H. Blau and L. Kedes. 1983. α-Skeletal and cardiac actin genes are coexpressed in adult human skeletal muscle and heart. Mol. Cell. Biol. 3:1985.

    PubMed  CAS  Google Scholar 

  • Gunning, P., P. Ponte, L. Kedes, R. Eddy and T. Shows. 1984. Chromosomal location of the co-expressed human skeletal and cardiac actin genes. Proc. Natl. Acad. Sci. USA 81:1813.

    Article  PubMed  CAS  Google Scholar 

  • Gustafson, T. A., B. E. Markham and E. Morkin. 1986. Effects of thyroid hormone on α-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: measure-ment of mRNA content using synthetic oligonucleotide probes. Circ. Res. 59:194.

    PubMed  CAS  Google Scholar 

  • Hammer, J. A., E. D. Korn and B. M. Paterson. 1986. Isolation of a non-muscle myosin heavy chain gene from Acanihamoeba. J. Biol. Chem. 261:1949.

    PubMed  CAS  Google Scholar 

  • Hastings, K. E. M. and C. P. Emerson, Jr. 1982. cDNA clone analysis of six co-regulated mRNAs encoding skeletal muscle contractile proteins. Proc. Natl. Acad. Sci. USA 79:1553.

    Article  PubMed  CAS  Google Scholar 

  • Helfman, D. M., S. Cheley, E. Kuismanen, L. A. Finn and Y. Yamawaki-Kataoka. 1986. Non-muscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation. Mol. Cell. Biol. 6:3582.

    PubMed  CAS  Google Scholar 

  • Hoh, J., P. McCrath and P. Hale. 1977. Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thryoxine replacement. J. Mol. Cell. Cardiol. 10:1053.

    Article  Google Scholar 

  • Izumo, S., A. M. Lompre, R. Matsuoka, G. Koren, K. Schwartz, B. Nadal-Ginard and V. Mahdavi. 1987. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. J. Clin. Invest. 79:970.

    Article  PubMed  CAS  Google Scholar 

  • Izumo, S., B. Nadal-Ginard and V. Mahdavi. 1986. All members of the MHC multigene family respond to thyroid hormone in a highly tissue-specific manner. Science 231:597.

    Article  PubMed  CAS  Google Scholar 

  • Kavinsky, C. J., P. K. Umeda, A. M. Sinha, M. Elzing, S. W. Tong, R. Zak, S. Jackovcic and M. Rabinowitz. 1983. Cloned mRNA sequences for two types of embryonic myosin heavy chains from chick skeletal muscle. J. Biol. Chem. 258:5196.

    PubMed  CAS  Google Scholar 

  • Konieczny, S. F. and C. P. Emerson, Jr. 1985. Differentiation, not determination, regulates muscle gene activation: transfection of troponin I genes into multipotential and muscle lineages of 10T1/2 cells. Mol. Cell. Biol. 5:2423.

    PubMed  CAS  Google Scholar 

  • Leinwand, L. A., R. E. K. Fournier, B. Nadal-Ginard and T. Shows. 1983a. Multigene family for sarcomeric myosin heavy chain in mouse and human DNA: localization on a single chromosome. Science 221:766.

    Article  PubMed  CAS  Google Scholar 

  • Leinwand, L. A., L. Saez, E. McNally and B. Nadal-Ginard. 1983b. Isolation and characterization of human myosin heavy chain genes. Proc. Natl. Acad. Sci. USA 80:3716.

    Article  PubMed  CAS  Google Scholar 

  • Lichter, P., P. K. Umeda, J. E. Levin and H. P. Vosberg. 1986. Partial characterization of the human β-myosin heavy-chain gene which is expressed in heart and skeletal muscle. Eur. J. Biochem. 160:419.

    Article  PubMed  CAS  Google Scholar 

  • Lompre, A. M., J. J. Mercadier, C. Wisnewsky, P. Bouveret, C. Pantaloni, A. D’Albis and K. Schwartz. 1981. Species-and age-dependent changes in the relative amounts of cardiac myosin isoenzymes in mammals. Dev. Biol. 84:286.

    Article  PubMed  CAS  Google Scholar 

  • Lompre, A. M., B. Nadal-Ginard and V. Mahdavi. 1984. Expression of the cardiac ventricular α- and β-myosin heavy chain genes is developmentally and hormonally regulated. J. Biol. Chem. 259:6437.

    PubMed  CAS  Google Scholar 

  • Lowey, S. 1986. Cardiac and skeletal muscle myosin polymorphism. Med. Sci. Sports Exer. 18:284.

    Article  CAS  Google Scholar 

  • Lowey, S. and D. Risby. 1971. Light chains from fast and slow muscle myosins. Nature 234:81.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod, A. R., K. Talbot, F. C. Reinach, C. Houlker, L. B. Smillie, C. S. Giometti and N. L. Anderson. 1986. Molecular characterization of human cytoskeletal tropomyosins. In: C. P. Emerson, D. Fischman, B. Nadal-Ginard and M. A. Q. Siddiqui (Ed.) Molecular Biology of Muscle Development, pp 445–455. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Mahdavi, V., A. P. Chambers and B. Nadal-Ginard. 1984. Cardiac alpha and beta myosin heavy chain genes are organized in tandem. Proc. Natl. Acad. Sci. USA 81:2626.

    Article  PubMed  CAS  Google Scholar 

  • Mahdavi, V., M. Periasamy and B. Nadal-Ginard. 1982. Molecular characterization of two myosin heavy chain genes expressed in the adult heart. Nature 297:659.

    Article  PubMed  CAS  Google Scholar 

  • Mahdavi, V., E. E. Strehler, M. Periasamy, D. F. Wieczorek, S. Izumo and B. Nadal-Ginard. 1986. Sarcomeric myosin heavy chain gene family: organization and pattern of expression. Med. Sci. Sports Exer. 18:299.

    Article  CAS  Google Scholar 

  • Mak, A. S., W. G. Lewis and L. B. Smillie. 1979. Amino acid sequence of rabbit skeletal ß and cardiac tropomyosins. FEBS Lett. 105:232.

    Article  PubMed  CAS  Google Scholar 

  • Mercadier, J., A. Lompre, C. Wisnewsky, J. Samuel, J. Bercovice, B. Swynghedauw and K Schwartz. 1981. Myosin isozyme changes in several models of rat cardiac hypertrophy. Circ. Res. 49:525.

    PubMed  CAS  Google Scholar 

  • Miller, D. M., F. E. Stockdale and J. Karn. 1986 Immunological identification of the genes encoding the four myosin heavy chain isoforms of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 83:2305.

    Article  PubMed  CAS  Google Scholar 

  • Minty, A. J., S. Alonso, M. Caravetti and M. E. Buckingham. 1982. A fetal skeletal muscle actin mRNA in the mouse, and its identity with cardiac actin mRNA. Cell 30:185.

    Article  PubMed  CAS  Google Scholar 

  • Minty, A., H. Blau and L. Kedes. 1986. Two-level regulation of cardiac actin gene transcription: muscle-specific modulating factors can accumulate before gene activation. Mol. Cell. Biol. 6:2137.

    PubMed  CAS  Google Scholar 

  • Minty, A. and L. Kedes. 1986. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionary conserved repeated motif. Mol. Cell. Biol. 6:2125.

    PubMed  CAS  Google Scholar 

  • Moriarity, D. M., K. J. Barringer, J. B. Dodgson, H. E. Richter and R. B. Young. 1987. Genomic clones encoding chicken myosin heavy-chain genes. DNA 6:91.

    Article  PubMed  CAS  Google Scholar 

  • Morkin, E., I. L. Flink and S. Goldman. 1983. Biochemical and physiologic effects of thyroid hormone on cardiac performance. Prog. Cardiovasc. Dis. 25:435.

    Article  PubMed  CAS  Google Scholar 

  • Nebeshima, Y., Y. Kurijama-Fujii, M. Muramatsu and K. Ogata. 1984. Alternative transcription and two modes of splicing result in two myosin light chains from one gene. Nature 308:333.

    Article  Google Scholar 

  • Nadal-Ginard, B., R. E. Breitbart, A. Andreadis, M. Gallego, Y. T. Yu, G. Koren, G. White, P. Bouvagnet and V. Mahdavi. 1987 Generation of complex contractile protein phenotypes through promoter selection and alternative pre-mRNA splicing. ICSU Short Rep. 7:62.

    Google Scholar 

  • Nadal-Ginard, B., R. E. Breitbart, E. E. Strehler, N. Ruiz-Opazo, M. Periasamy and V. Mahdavi. 1986. Alternative splicing: a common mechanism for the generation of contractile protein diversity from single genes. In: C. P. Emerson, D. Fischman, B. Nadal-Ginard and M. A. Q. Siddiqui (Ed.) Molecular Biology of Muscle Development, pp. 387–410. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Nadal-Ginard, B., R. M Medford, H. T. Nguyen, M. Periasamy, R. M. Wydro, D. Hornig, R. Gabits, L. I. Garfinkel, D. Weiczorek, E. Bekesi and V. Mahdavi. 1982. Structure and regulation of a mammalian sarcomeric myosin heavy chain gene. In: M. L. Pearson and H. F. Esptein (Ed.) Muscle Development: Molecular and Cellular Control, pp 143–168.

    Google Scholar 

  • Nadal-Ginard, B., R. M. Medford, H. T. Nguyen, M. Periasamy, R. M. Wydro, D. Hornig, R. Gabits, L. I. Garfinkel, D. Weiczorek, E. Bekesi and V. Mahdavi Cold Spring Harbor Laboratory, Cold Spring Harbor.

    Google Scholar 

  • NY. Nikovits, W., Jr., G. Kuncio and C. P. Ordahl. 1986. The chicken fast skeletal troponin I gene: exon organization and sequence. Nucleic Acids Res. 14:3377.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer, J. H. and H. H. Samuels (Ed.). 1983. Molecular Basis of Thyroid Hormone Action. Academic Press, New York.

    Google Scholar 

  • Periasamy, M., E. E. Strehler, L. I. Garfinkel, R. M. Gubits, N. Ruiz-Opazo and B. Nadal-Ginard. 1984a. Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing. J. Biol. Chem. 259:13595.

    PubMed  CAS  Google Scholar 

  • Periasamy, M., D. F. Weiczorek and B. Nadal-Ginard. 1984b. Characterization of a developmenttally regulated perinatal myosin heavy-chain gene expressed in skeletal muscle. J. Biol. Chem. 259:13573.

    PubMed  CAS  Google Scholar 

  • Periasamy, M., R. M. Wydro, M. A. Strehler-Page, E. E. Strehler and B. Nadal-Ginard. 1985. Characterization of cDNA and genomic sequences corresponding to an embryonic myosin heavy chain. J. Biol. Chem. 260:15856.

    PubMed  CAS  Google Scholar 

  • Queen, C. and D. Baltimore. 1983. Immunoglobulin gene transcription is activated by downstream sequence elements. Cell 33:741.

    Article  PubMed  CAS  Google Scholar 

  • Richter, H. E., R. B. Young, J. R. Hudson, Jr. and D. M. Moriarity. 1987. Screening of a bovine genomic library for myosin heavy chain genes. J. Anim. Sci. 64:607.

    PubMed  CAS  Google Scholar 

  • Robbins, J., G. A. Freyer, D. Chisholm and T. C. Gilliam. 1982. Isolation of multiple genomic sequences coding for chicken myosin heavy chain protein. J. Biol. Chem. 257:549.

    PubMed  CAS  Google Scholar 

  • Robert, B., P. Daubas, M. A. Akimenko, A. Cohen, I. Garner, J. L. Guenet and M. Buckingham. 1984. A single locus in the mouse encodes both myosin light chains 1 and 3, a second locus corresponds to a related pseudogene. Cell 39:129.

    Article  PubMed  CAS  Google Scholar 

  • Rozek, C. E. and N. Davidson. 1986. Differential processing of RNA transcribed from the single-copy Drosophila myosin heavy chain gene produces four mRNAs that encode two polypeptides. Proc. Natl. Acad. Sci. USA 83:2128.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Opazo, N., J. Weinberger and B. Nadal-Ginard. 1983. Different tissue specific forms of α-tropomyosin encoded by the same gene. J. Cell Biol. 97:329a.

    Google Scholar 

  • Ruiz-Opazo, N., J. Weinberger and B. Nadal-Ginard. 1985. One smooth and two striated, skeletal and cardiac, α-tropomyosin isoforms are encoded by the same gene. Nature 315:67.

    Article  PubMed  CAS  Google Scholar 

  • Saad, A. D., T. Obinata and D. A. Fischman. 1987. Immunochemical analysis of protein isoforms in thick myofilaments of regenerating skeletal muscle. Dev. Biol. 119:336.

    Article  PubMed  CAS  Google Scholar 

  • Saez, L. and L. A. Leinwand. 1986a. Characterization of diverse forms of myosin heavy chain expressed in adult human skeletal muscle. Nucleic Acids Res. 14:2951.

    Article  PubMed  CAS  Google Scholar 

  • Saez, L. J. and L. A. Leinwand. 1986b. Cloning and characterization of myosin cDNAs in adult human skeletal muscle. In: C. P. Emerson, D. Fischman, B. Nadal-Ginard and M. A. Q. Siddiqui (Ed.) Molecular Biology of Muscle Development, pp 263–272. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Schwartz, K., A. M. Lompre, P. Bouveret, C. Wisnewsky and R. G. Whalen. 1982. Comparisons of rat cardiac myosins at fetal stages in young animals and in hypothyroid adults. J. Biol. Chem. 257:14412.

    PubMed  CAS  Google Scholar 

  • Seiler-Tuyns, A., J. D. Eldridge and B. M. Paterson. 1984. Expression and regulation of chicken actin genes introduced into mouse myogenic and nonmyogenic cells. Proc. Natl. Acad. Sci. USA 81:2980.

    Article  PubMed  CAS  Google Scholar 

  • Singer, R. H. and G. Kessler-Icekson. 1978. Stability of polyadenylated RNA in differentiating myogenic cells. Eur. J. Biochem. 88:395.

    Article  PubMed  CAS  Google Scholar 

  • Sinha, A. M., P. K. Umeda. C. J. Kavinsky, C. Rajamanickam, H. J. Hsu, S. Jakovcic and M. Rabinowitz. 1982. Molecular cloning of mRNA sequences for cardiac α- and β-form myosin heavy chains: expression in ventricles of normal, hypothyroid and thyrotoxic rabbits. Proc. Natl. Acad. Sci. USA 79:5847.

    Article  PubMed  CAS  Google Scholar 

  • Sivaramakrishnan, M. and M. Burke. 1982. The free heavy chain of vertebrate skeletal myosin subfragment I shows full enzymatic activity. J. Biol. Chem. 257:1102.

    PubMed  CAS  Google Scholar 

  • Sodek, J., R. S. Hodges and L. B. Smillie. 1978. Amino acid sequence of rabbit skeletal muscle α-tropomyosin: the COOH terminal half (residue 142–284). J. Biol. Chem. 253:1129.

    PubMed  CAS  Google Scholar 

  • Squire, J. 1981. The Structural Basis of Muscular Contraction. Plenum Press, New York.

    Book  Google Scholar 

  • Strehler, E. E., V. Mahdavi, M. Periasamy and B. Nadal-Ginard. 1985. Intron positions are con-served in the 5’ end region of myosin heavy chain genes. J. Biol. Chem. 260:4680.

    Google Scholar 

  • Strehler, E. E., M. A. Strehler-Page, J. C. Perriard, M. Periasamy and B. Nadal-Ginard. 1986. Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. Evidence against introndependent evolution of the rod. J. Mol. Biol. 190:291.

    Article  PubMed  CAS  Google Scholar 

  • Szent-Gyorgyi, A. G., E. M. Szentkiralyi and J. Kendrick-Jones. 1973. The light chains of scallop myosin as regulatory subunits. J. Mol. Biol. 74:179.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchimochi, H., M. Kuro-O, F. Takaku, K. Yoshida, M. Kawana, S. I. Kimata and Y. Yazaki. 1986. Expression of myosin isozymes during the developmental stage and their redistribution induced by pressure overload. Jpn. Circ. J. 50:1044.

    Article  PubMed  CAS  Google Scholar 

  • Vandekerckhove, J. and K. Weber. 1979. The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. Differentiation 14:123.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, P. D. and E. Giniger. 1981. Hydrolysis of ATP and reversible binding to Factin by myosin heavy chains free of all light chains. Nature 292:560.

    Article  PubMed  CAS  Google Scholar 

  • Warrick, H. M., A. DeLozanne, L. A. Leinwand and J. A. Spudich. 1986. Conserved protein domains in a myosin heavy chain gene from Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 83:9433.

    Article  PubMed  CAS  Google Scholar 

  • Weydert, A., P. Daubas, M. Caravetti, A. Minty, G. Bugaisky, A. Cohen, B. Robert and M. Buckingham. 1983. Sequential accumulation of mRNAs encoding different myosin heavy chain isoforms during skeletal muscle development in vivo detected with a recombinant plasmid identified as coding for an adult fast myosin heavy chain from mouse skeletal muscle. J. Biol. Chem. 258:13867.

    PubMed  CAS  Google Scholar 

  • Weydert, A., P. Daubas, I. Lazaridis, P. Barton, I. Garner, D. P. Leader, F. Bonhomme, J. Catalan, D. Simon, J. L. Guenet, F. Gros and M. E. Buckingham. 1985. Genes for skeletal muscle myosin heavy chain are clustered and are not located on the same mouse chromosome as a cardiac myosin heavy chain gene. Proc. Natl. Acad. Sci. USA 82:7183.

    Article  PubMed  CAS  Google Scholar 

  • Whalen, R. G., G. S. Butler-Browne, S. M. Sell, K. Schwartz, P. Bouveret and I. Pinset-Har-strom. 1980. Transitions in myosin isoforms during muscle development. J. Muscle. Res. Cell Motility 1:473.

    Google Scholar 

  • Whalen, R. C. 1985. Myosin isoenzymes as molecular markers for muscle physiology. J. Exp. Biol. 115:43.

    PubMed  CAS  Google Scholar 

  • Wieczorek, D. F., M. Periasamy, G. S. Butler-Browne, R. G. Whalen and B. Nadal-Ginard. 1985. Coexpression of multiple myosin heavy chain genes, in addition to a tissue-specific one, in extraocular musculature. J. Cell Biol. 101:618.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, J. M., I. M. Bird, G. K. Dhoot, B. A. Levine and R. D. Taylor. 1986. Expression of troponin T variants in chicken striated muscle. In: C. P. Emerson, D. Fischman, B. Nadal-Ginard and M. A. Q. Siddiqui (Ed.) Molecular Biology of Muscle Development, pp 423 – 436. Alan R. Liss, Inc., New York.

    Google Scholar 

  • Wilkinson, J. M., A. J. G. Moir and M. D. Waterfield. 1984. The expression of multiple forms of troponin T in chicken-fast-skeletal muscle may result from differential splicing of a single gene. Eur. J. Biochem. 143:47.

    Article  PubMed  CAS  Google Scholar 

  • Wydro, R. M., H. T. Nguyen, R. M. Gubits and B. Nadal-Ginard. 1983. Characterization of sarcomeric myosin heavy chain genes. J. Biol. Chem. 258:670.

    PubMed  CAS  Google Scholar 

  • Young, R. B., D. M. Moriarity and C. E. McGee. 1986. Structural analysis of myosin genes using recombinant DNA techniques. J. Anim. Sci. 63:259.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Richter, H.E., Young, R.R., Moriarity, D.M. (1989). Regulation of Myofibrillar Protein Gene Expression. In: Campion, D.R., Hausman, G.J., Martin, R.J. (eds) Animal Growth Regulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8872-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8872-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8874-6

  • Online ISBN: 978-1-4684-8872-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics