Advertisement

Towards a Standard String Model

  • Hans Peter Nilles
Part of the The Subnuclear Series book series (SUS, volume 26)

Abstract

String theories offer the exciting prospect of a consistent, finite description of gravitation in the framework of quantum mechanics1. Since these theories naturally also contain nonabelian gauge interactions, they have been proposed as candidate theories for a unification of all fundamental forces. It is our task to investigate such a possible connection between string theories and the physical world. We should state at the beginning that such questions cannot be answered definitely at the moment. The main reason for this is our poor understanding of the dynamics of string theory. Nonetheless we can ask these questions and see how far it might be possible to embed the standard SU(3) × SU(2) × U(1) model of strong and electroweak interactions in such a string theory. Once this is achieved we could then obtain hints to go beyond the standard model and solve some of the problems attached to it. The purpose of these lectures is a review of the progress made in this direction. Before we go into details let us, however, discuss those questions that could (and should) be asked when adopting this framework.

Keywords

Gauge Group Gauge Boson Yukawa Coupling Wilson Line Hide Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review see: M.B. Green,J.H. Schwarz and E. Witten, Superstring Theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press 1987Google Scholar
  2. 2.
    P. Candelas, G. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B258 (1985) 46CrossRefGoogle Scholar
  3. 3.
    For a review see: H.P. Nilles, Physics Reports 110 (1984) 1CrossRefGoogle Scholar
  4. 4.
    H.P. Nilles, Phys. Lett. 115B (1982) 193;Google Scholar
  5. H.P. Nilles, Nucl. Phys. B217 (1983) 366CrossRefGoogle Scholar
  6. 5.
    S. Ferrara, L. Girardello and H.P. Nilles, Phys. Lett. 125B (1983) 457Google Scholar
  7. 6.
    R. Barbieri, S. Ferrara and C.A. Savoy, Phys. Lett. 119B (1982) 343Google Scholar
  8. 7.
    J.P. Derendinger, L. Ibanez and H.P. Nilles, Phys. Lett. 155B (1985) 65Google Scholar
  9. 8.
    M. Dine, R. Rohm, N. Seiberg and E. Witten, Phys. Lett. 156B (1985) 55Google Scholar
  10. 9.
    L. Ibanez, J. Mas, H.P. Nilles and F. Quevedo, Nucl. Phys. B301 (1988) 157CrossRefGoogle Scholar
  11. 10.
    M. Green and J. Schwarz, Phys. Lett. 149B (1984) 117Google Scholar
  12. 11.
    D.J. Gross, J.A. Harvey, E. Martinec and R. Rohm, Phys. Rev. Lett. 54 (1985) 502;PubMedCrossRefGoogle Scholar
  13. D.J. Gross, J.A. Harvey, E. Martinec and R. Rohm, Nucl. Phys. B256 (1985) 253;CrossRefGoogle Scholar
  14. D.J. Gross, J.A. Harvey, E. Martinec and R. Rohm, Nucl. Phys. B267 (1986) 75CrossRefGoogle Scholar
  15. 12.
    K.S. Narain, Phys. Lett. 169B (1986) 41Google Scholar
  16. 13.
    K.S. Narain, M.H. Sarmadi and E. Witten, Nucl. Phys. B279 (1987) 369CrossRefGoogle Scholar
  17. 14.
    R. Rohm, Nucl. Phys. B237 (1984) 553CrossRefGoogle Scholar
  18. 15.
    L. Dixon, J. Harvey, C. Vafa and E. Witten, Nucl. Phys. B261 (1985) 678 and B274 (1986) 75Google Scholar
  19. 16.
    W. Lerche, D. Lüst and A.N. Schellekens, Nucl. Phys. B287 (1987) 477CrossRefGoogle Scholar
  20. 17.
    H. Kawai, D.C. Lewellen and S.H.H. Tye, Nucl. Phys. B288 (1987) 1;CrossRefGoogle Scholar
  21. I. Antoniadis, C. Bachas and C. Kounnas, Nucl. Phys. B289 (1987) 87CrossRefGoogle Scholar
  22. 18.
    L. Ibanez, H.P. Nilles and F. Quevedo, Phys. Lett. 187B (1987) 25Google Scholar
  23. 19.
    K.S. Narain, M.H. Sarmadi and C. Vafa, Nucl. Phys. B288 (1987) 551CrossRefGoogle Scholar
  24. 20.
    S. Hamidi and C. Vafa, Nucl. Phys. B279 (1987) 465CrossRefGoogle Scholar
  25. 21.
    L. Dixon, D. Friedan, E. Martinec and S. Shenker, Nucl. Phys. B282 (1987) 13CrossRefGoogle Scholar
  26. 22.
    L. Ibanez, Jihn E. Kim, H.P. Nilles and F. Quevedo, Phys. Lett. 191B (1987) 282Google Scholar
  27. 23.
    L. Ibanez, H.P. Nilles and F. Quevedo, Phys. Lett. 192B (1987) 332Google Scholar
  28. 24.
    A. Font, L. Ibanez, H.P. Nilles and F. Quevedo, Nucl. Phys. B307 (1988) 109CrossRefGoogle Scholar
  29. 25.
    F. Buccella, J.P. Derendinger, S. Ferrara and C.A. Savoy, Phys. Lett. 115B (1982) 375;Google Scholar
  30. R. Gatto and G. Sartori, Comm. Math. Phys. 109 (1987) 327CrossRefGoogle Scholar
  31. 26.
    A. Font, L. Ibanez, H.P. Nilles and F. Quevedo, On the concept of naturalness in string theories, CERN preprint TH-5034 (1988), to appear in Physics Letters.Google Scholar
  32. 27.
    M. Cvetie, Phys. Rev. Lett. 59 (1987) 2829CrossRefGoogle Scholar
  33. 28.
    J.A. Casas and C. Munoz, Phys. Lett. 209B (1988) 214Google Scholar
  34. 29.
    A. Font, L. Ibânez, H.P. Nilles and F. Quevedo, Phys. Lett. 210B (1988) 101Google Scholar
  35. 30.
    B. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, Nucl. Phys. B278 (1986) 667CrossRefGoogle Scholar
  36. 31.
    For a review and a list of references see: J. Ellis, Aspects of superstring model building, CERN preprint TH-5103 (1988)Google Scholar
  37. 32.
    F. del Aguila and G.D. Coughlan, Very large intermediate scales in three generation models, CERN preprint TH-5143 (1988)Google Scholar
  38. 33.
    Jihn E. Kim and H.P. Nilles, Phys. Lett. 138B (1984) 150Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Hans Peter Nilles
    • 1
    • 2
  1. 1.Physik DepartmentTechnische UniversitätMünchenGermany
  2. 2.Max-Planck-Institut für und Physik und AstrophysikMünchenGermany

Personalised recommendations