Advertisement

Layered Silicates: The Protonation Behavior of KHSi2O5

  • D. M. Millar
  • J. M. Garces
  • D. Hasha
  • H. E. Klassen

Abstract

As part of a larger effort exploring the structure and chemistry of layered silicates, we have investigated the synthesis and protonation behavior of potassium hydrogen disilicate, KHSi2O5. Crystals of KHSi2O5 were prepared hydrothermally and obtained in high yield. Protonation of this material with excess acid rapidly produces crystalline H2Si2O5. Although the bulk crystal morphology is retained during protonation, significant reorganization of the silicate layers has occurred, including the formation of a previously unreported H2Si205 phase. These transformations have been studied by carefully controlling the acid concentration during protonation and characterizing the resulting structural changes using X-ray diffraction, thermogravimetric analysis, and solid-state NMR spectroscopy.

Keywords

Microporous Material Alkali Metal Hydroxide Rapid Protonation Silicon Center Complete Protonation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    a) Eugster, H.P. Science 1967, 157: 1177.CrossRefGoogle Scholar
  2. b) Sheppard, R.A., Gude, A.J., and Jay, R.L. Am. Mineral. 1970, 55: 358.Google Scholar
  3. c) Johan, Z. and Maglione, G.F. Bull. Soc. fr. Mineral. Cristallogr. 1972, 95: 371.Google Scholar
  4. d) Brindley, G.W. Am. Mineral. 1969, 54: 1583.Google Scholar
  5. 2.
    LeBihan, M.T., Kalt, A., and Wey, R. Bull. Soc. Fr. Mineral Cristallogr. 1971, 94: 15.Google Scholar
  6. 3.
    Kalt, A. and Wey, R.; C.R. Acad. Sci. Paris, Ser. D 1967, 265: 1437.Google Scholar
  7. 4.
    Kalt, A. Ph.D. Thesis, University of Strasbourg, Strasbourg, France, 1968.Google Scholar
  8. 5.
    Deng, Z.Q., Lambert, J.F., and Fripiat, J.J. Materials 1989, 1: 375.Google Scholar
  9. 6.
    Kalt, A. and Wey, R.; C.R. Acad. Sci. Paris. Ser. D 1967, 1: 265.Google Scholar
  10. 7.
    Lipmaa, E., Magi, M., Somoson, A., Engelhardt, G., and Grimmer, A.R. J. Am. Chem. Soc. 1980, 102: 4489.Google Scholar
  11. 8.
    Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G., and Grimmer, A.R. J. Am. Chem. Soc. 1980 102: 4889.CrossRefGoogle Scholar
  12. 9.
    Rojo, J.M.; Ruiz-Hitzky, E.; Sanz, J.; Serratosa, J.M. Revue de Chimie Minerale 1983, 20, 807.Google Scholar
  13. 10.
    Hunger, M.; Freude, D.; Pfeifer, H. J. Chem. Soc. Faraday Trans. 1991, 87(4), 657.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • D. M. Millar
    • 1
  • J. M. Garces
    • 1
  • D. Hasha
    • 2
  • H. E. Klassen
    • 2
  1. 1.Central Research Catalysis LaboratoryUSA
  2. 2.Analytical Sciences LaboratoryThe Dow Chemical CompanyMidlandUSA

Personalised recommendations