Anionic Clays: Trends in Pillaring Chemistry

  • André de Roy
  • Claude Forano
  • Khalid El Malki
  • Jean-Pierre Besse


Minerals of the anionic clay family are reported by mineralogists since the beginning of this century: (Kurnakov and Chernykh 1926; Aminoff and Broomé 1930; Read and Dixon 1933; Frondel 1941). A great variety of names is used in relation to the composition and the nature of the polytypes of these minerals (hydrotalcite, manasseite, pyroaurite, sjögrenite, stichtite, takovite, honessite, meixnerite...); Drits et al. 1987 proposed a systematic nomenclature. Anionic clay minerals are relatively rare and are often associated with serpentinites in metamorphic formations. These minerals also occur in saline deposits which shows that high temperature and pressure conditions are not absolutely necessary for their genesis.


Basal Spacing Organic Anion Interlamellar Spacing Sulfate Anion Microporous Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allmann, R. and Lohse, H. H. 1966. Die kristallstruktur des sjögrenits und eines umwandlungsproduktes des koenenits (= chlor-manasseits). N. Jb. Miner. Mh.: 161–80.Google Scholar
  2. Allmann, R. 1968a. The crystal structure of pyroaurite. Acta Cryst. B24: 972–77.CrossRefGoogle Scholar
  3. Allmann, R. 1968b. Die doppelschichstruktur der plättenchenförmigen calcium-aluminium-hydroxysalze. N. Jb. Miner. Mh.: 140–44.Google Scholar
  4. Alhnann, R. 1969. Nachtrag zu den stukturen des pyroaurits und sjögrenits. N. Jb. Miner. Mh.: 552–58.Google Scholar
  5. Aminoff, G. and Broome, B. 1930. Contribution to the knowledge of the mineral pyroaurite. Kungl. Svenska. Vetensckaps Handel 9: 23–37.Google Scholar
  6. Auffredic, J. P., Plevert, J., and Louer, D. 1990. Temperature-resolved X-ray powder diffractometry of a new cadmium hydroxide nitrate. J. Solid State Chem. 84: 58–70.Google Scholar
  7. Bear, I. J., Grey, I. E., Madsen, I. C., Newnham, I. E., and Rodgers L. J. 1986. Structures of the basic zinc sulfates 3Zn(OH)2. ZnSO4.mH2O, m = 3 and 5. Acta Cryst B42: 32–39.Google Scholar
  8. Benard, P., Louer, M., Auffredic, J. P., and Louer, D. 1991. Crystal structure and temperature-resolved powed diffractometry of Cd5(OH)8(NO3)2.2H20. J. Solid State Chem. 91: 296–305.Google Scholar
  9. Bernal, J. D. R., Dasgupta, D., and Mackay, A. L. 1959. The oxides and hydroxides of iron and their structural inter-relationships. Clay Minerals Bull. 4: 15–30.CrossRefGoogle Scholar
  10. Bish, D. L. and Brindley, G. W. 1977. A reinvestigation of takovite, a nickel aluminium hydroxy-carbonate of the pyroaurite group. Amer. Miner. 62: 458–64.Google Scholar
  11. Bish, D. L. 1980. Anion-exchange in takovite: applications to other hydroxide minerals. Bull. Mineral 103: 170–75.Google Scholar
  12. Bish, D. L. and Livingstone, A. 1981. The crystal chemistry and paragenesis of honessite and hydrohonessite: The sulphate analogues of reevesite. Miner. Mag,, 44: 339–43.Google Scholar
  13. Boehm, H. P., Steinle, J., and Vieweger, C. 1977. [Zn2Cr(OH)6JX. 2H20, new layer compounds capable of anion exchange. Angew. Chem. Int. Ed. Engl 16: 265–66.Google Scholar
  14. Borthomieu, Y. 1990. Contribution de la chimie douce à l’étude des hydroxydes et oxyhydroxydes de nickel substitués au cobalt. Université Bordeaux Thèse d’Université.Google Scholar
  15. Bujoli-Doeuff, M., Force, L. Gadet, V., Verdaguer, M., El Malki, K., de Roy, A., Besse, J. P., and Renard, J.P. 1991. A new, bidimensional approach to molecular-based magnets: nickel (II)-chromium (III) double hydroxydes systems. Mat. Res. Bull. (in press).Google Scholar
  16. Buttler, F. G., Dent Glasser, L. L., and Taylor, H. F. W. 1959. Studies on 4CaO.Al2O3.13H2O and related natural mineral Hydrocalumite. J. Am.Ceram. Soc. 42 (3): 121–26.Google Scholar
  17. Cavalcanti, F. A. P., Schutz, A., and Biloen, P. 1987. Interlayer accessibility in layered double-metal hydroxides. (Prep. Catal. 4). Stud. Surf. Sci. Catal.: 165–74.Google Scholar
  18. Chamaa, G. 1991. Synthèses et caractérisations de nouveaux hydroxydes doubles lamellaires au cobalt et au fer. Université Blaise Pascal DEA de Chimie (internal communication).Google Scholar
  19. Chibwe, K. and Jones, W. 1989a. Intercalation of Organic and Inorganic Anions into Layered Double Hydroxides. J. Chem. Soc. Chem. Commun.: 926–27.Google Scholar
  20. Chibwe W. and Jones, K. 1989b. Chem. Mater. 1 (5): 489–90.Google Scholar
  21. Clearfield, A. 1988. Role of ion exchange in solid-state chemistry. Chem. Rev. 88: 125–148.Google Scholar
  22. Courty, Ch. and Marcilly, Ph. 1983. A Scientific Approach to the Preparation of Bulk Mixed Oxide Catalysts. Elsevier Science Publishers B.V. Amsterdam: 485–517.Google Scholar
  23. de Roy, A., Besse, J. P., and Bondot, P. 1985. Structural approach and conductivity of lamellar hydroxides Zn2Cr(OH)6X. nH2O (X = anion) by XANES, EXAFS, and X-ray diffraction. Mat. Res. Bull 20: 1091–98.Google Scholar
  24. de Roy, A., Vernay, A. M., Besse, J. P., and Thomas, G. 1988. De l’hydrotalcite au spinelle. Etude de la transformation par diffraction des rayons X et analyse thermogravimétrique. Analusis 16 (7): 409–13.Google Scholar
  25. de Roy, A. and Besse, J.P. 1989. Conductivité ionique de composés de type hydrotalcite. Solid State Ionics 35: 35–43.CrossRefGoogle Scholar
  26. de Roy, A. 1990. Synthèse et caractérisation de composés de type hydrotalcite: mesure de la conductivité ionique. Université Blaise Pascal. Thèse d’Etat. de Roy, A. and Besse, J.P. 1991. Evolution of protonic conduction in some synthetic anionic clays. Solid State Ionics 46: 95–101.Google Scholar
  27. Dimotakis T. J. and Pinnavaia, E. D. 1990. New route to layered double hydroxides intercalated by organic anions: Precursors to PolyoxometalatePillared Derivatives. Inorg. Chem. 29: 2393–94.Google Scholar
  28. Doeuff, M., Kwon, T., and Pinnavaia, T. J. 1989. Layered double hydroxides pillared by polyoxometalate anions: exafs studies and chemical synthesis. Synthetic Metals 34: 609–15.Google Scholar
  29. Drezdzon, M. A. 1988. Synthesis of isopolymetalate-pillared hydrotalcite/organic-anion-pillared precursors. Inorg. Chem. 27: 4628–32.Google Scholar
  30. Drits, V. A., Sokolova, T. N., Sokolova, G. V., and Cherkashin, V. I. 1987. New members of the hydrotalcite-manasseite group. Clays and Clay Minerals 35: 401–17.CrossRefGoogle Scholar
  31. Dupuis, J., Battut, J. P., Fawal, Z., Hajjimohamad, H., de Roy, A., and Besse, J. P. 1990. Nuclear magnetic resonance of protons in the hydrotalcite type compound Zn2r3A11t3(OH)2C11r3.n(H2O). Solid State Ionics 42: 251–55Google Scholar
  32. El Malki, K., de Roy, A., and Besse, J. P. 1989. New CuCr layered double hydroxide compound: discussion of pillaring with intercalated tetrahedral anions. Eur. J. Solid State Inorg. Chem. 26: 339–51.Google Scholar
  33. El Malki, K. 1991. Synthèse et Caractérisation de Nouveaux Hydroxydes Doubles Lamellaires. Etude des échanges anioniques et de la réticulation. Etude des propriétés électriques et magnétiques. Université Blaise Pascal Thèse d’Université.Google Scholar
  34. El Malki, K., Guenane, M., Forano, C., de Roy, A., and Besse, J. P. 1991. Inorganic and organic anionic pillars intercalated in lamellar double hydroxides. Materials Science Forum (in press).Google Scholar
  35. Espinat, D., Godart, E., and Thevenot, F. 1987. Simulation des spectres de diffraction des rayons X. Analusis 15: 337–46.Google Scholar
  36. Faure, C. 1990. Caractérisations physico-chimiques et électrochimiques de nouveaux hydroxydes de nickel substitués au cobalt. Université Bordeaux Thèse d’Université.Google Scholar
  37. Feitknecht, W. 1933. The structure of the basic salts of bivalent metals. Helv. Chim. Acta 16: 427–54.Google Scholar
  38. Feitknecht, W. and Fischer, G. 1935. Chemistry and morphology of the basic salts of the bivalent metals. Basic cobalt chloride. Heiv. Chim. Acta 18: 555–69.Google Scholar
  39. Feitknecht, W. 1938. Über die a-form der hydroxide zweiwertiger metalle. Heiv. Chim. Act* 21: 766–84.Google Scholar
  40. Feitknecht, W. and Gerber, M. 1942. Double hydroxides and basic double salts. II Mixed precipitates from calcium-aluminium salts solutions. III Magnesium-aluminium double hydroxides. Helv. Chim. Acta 25: 106137.Google Scholar
  41. Feitknecht, W. 1942. Über die bilding von doppelhydroxyden zwischen zwei-und dreiwertigen metallen. Helv. Chim. Acta 25: 555–69.Google Scholar
  42. Feitknecht, W. and Held, F. 1944. Über magnesium-aluminiumdoppelhydroxyd und-hydroxydoppelchlorid. Helv. Chem. Acta 27: 1495–1500.Google Scholar
  43. Frondel, C. 1941. Constitution and polymorphism of the pyroaurite and sjögrenite groups. Amer. Mineral. 26: 295–315.Google Scholar
  44. Gadet, V., Bujoli-Doeuff, M., Force, L., Verdaguer, M., El Malki, K., de Roy, A., Besse, J. P., Chappert, C., Veillet, P., and Renard, J. P. Towards high Tc ferro and ferrimagnetic bi and tridimensional materials from molecular precursors. NATO ASI Series (Eds: D. Gatteschi O. Kahn J.S. Miller F. Falacio): Reidel (in press).Google Scholar
  45. Gastuche, M. C., Brown, G., and Mortland, M. M. 1967. Mixed Mg-Al hydroxides-I-Prep. and characterization of compounds. Clay Miner 7: 17792.Google Scholar
  46. Giannelis, E.P., Nocera, D. G., and Pinnavaia, T. J. 1987. Anionic photocatalysts supported in layered double hydroxides: intercalation and photophysical properties of a ruthenium complex anion in synthetic hydrotalcite. Inorg. Chem. 26: 203–05.Google Scholar
  47. Guenane, M. 1990. Université Blaise Pascal DEA de Chimie (internal communication).Google Scholar
  48. Hashi, K., Kikkawa, S., and Koizumi, M. 1983. Preparation and properties of pyroaurite-like hydroxy minerals. Clays Clay Miner 31 (2): 152–54.CrossRefGoogle Scholar
  49. Hernandez-Moreno, M. J., Ulibarri, M. A., Rendon, J. L., and Serna, C. J. 1985. I.R. characteristics of hydrotalcite-like compounds. Phys. Chem. Minerals 12: 1234–38.Google Scholar
  50. Hudson, D. R. and Bussell, M. 1981. Mountkeithite, a new pyroaurite-related mineral with an expanded interlayer containing exchangeable MgSO4. Miner. Mag 44: 345–50.Google Scholar
  51. Ingram, L. and Taylor, H. F. W. 1967. The crystal structure of sjögrenite and pyroaurite. Miner. Mag. 36: 465–79.Google Scholar
  52. Itaya, K., Chang, H. C., and Uchida, I. 1987. Anion-exchanged hydrotalcitelike-clay-modified electrodes. Inorg. Chem 26: 624–26.Google Scholar
  53. Karrado, K. A., Kostapapas, A., and Suib, S. L. 1988. Layered double hydroxides (LDHs). Solid State Ionics 26: 77–86.Google Scholar
  54. Kaschaev, A. A., Feoktistov, G. D. and Petrova, S. V. 1985.Google Scholar
  55. Chlormagaluminite - (Mg,Fe2+)4Al2(OH)12(Cl,l/2CO3)2.2H2O - A newGoogle Scholar
  56. mineral of the manasseite-sjögrenite group (in Russian). Zapiski Vses. Mineralog. Obshchestva 1: 121–27.Google Scholar
  57. Kikkawa, S. and Koizumi, M. 1982. Ferrocyanide anion bearing Mg, Al hydroxide. Mat. Res. Bull. 17: 191–98.Google Scholar
  58. Kruissink, E. C., van Reijden, L., and Ross, J. R. 1981. Coprecipitated Ni-Alumina catalysts for methanation at high temperature. J. Chem. Soc. Faraday Trans. 77: 649–63.Google Scholar
  59. Kurnakov, N. S. and Chernykh, V. V. 1926. Physico-chemical investigation of hydrotalcite and pyroaurite (in Russian). Zapiski Rossiysk. Mineral, Obshch. 55: 118–25.Google Scholar
  60. Kwon, T., Tsigdinos, G. A., and Pinnavaia, T. J. 1988. Pillaring of layered double hydroxides (LDHs) by polyoxometalate anions. J. Am. Chem. Soc 110: 3653–54.Google Scholar
  61. Lal, M. and Howe, A. T. 1980. High proton conductivity in pressed pellets of zinc-chromium hydroxide. J. Chem. Soc. Chem. Commun. 15: 737.Google Scholar
  62. Lal, M. and Howe, A. T. 1981a. Studies of zinc-chromium hydroxy salts. Thermal decomposition of [Zn2Cr(OH)6]X.nH2O, where X- = F-, Cl-, Br, I-,1/2CO3- and NO3. J. Solid State Chem. 39: 368–76.Google Scholar
  63. Lal, M. and Howe, A. T. 1981b. Studies of zinc-chromium hydroxy salts. Composite anion conductors of pressed disks of [Zn2Cr(OH)6]X.nH2O, where X- = F-, Cl-, Br-, 1-, NO3 - and 1/2CO3-. J. Solid State Chem. 39: 377–86.Google Scholar
  64. Lippens, B. C., Fransen, P., van Ommen, J. G., Wijingaarden, R., Bosch, H., and Ross, J. R. H. 1985. The preparation and properties of lanthanum-promoted nickel-alumina catalysts: structure of the precipitates. Solid State Ionics 16: 275–82.Google Scholar
  65. Louer, M., Louer, D., and Grandjean, D. 1973. Etude structurale des hydroxynitrates de nickel et de zinc. Acta Cryst. B29: 1696–1710.Google Scholar
  66. Martin, K. J. and Pinnavaia, T. J. 1986. Layered double hydroxides as supported anionic reagents. Halide ion reactivity in [layered double hydroxides as supported anionic reagents. Halide ion reactivity in Zn2Cr(OH)6]X.nH20. J. Am. Chem. Soc. 108: 541–42.Google Scholar
  67. Mascolo, G. and Marino, 0. 1980. A new synthesis and characterisation of magnesium-aluminium hydroxides. Miner. Mag. 43: 619–21.Google Scholar
  68. Mendiboure, A. and Schöllhorn, R. 1986. Formation and anion exchange reactions of layered transition metal hydroxides. Rev. Chim. Miner. 23: 819–27.Google Scholar
  69. Meyn, M., Beneke, K., and Lagaly, G. 1990. Anion-exchange reactions of layered double hydroxides. Inorg. Chem 29: 5201–07.Google Scholar
  70. Mitchell, I.V. 1990. Pillared Layered Structures: Current Trends and Applications. Elsevier Science Publishers L., I.V. Mitchell, ed..Google Scholar
  71. Miyata, S. and Kumura, T. 1973. Synthesis of new hydrotalcite-like compounds and their physico-chemical properties. Chem. Lett.: 843–48. Miyata, S. 1975. The syntheses of hydrotalcite-like compounds and their stuctures and physico-chemical properties-I: the systems Mg2+-A13+-NO3, Mg2+-A13+-C1-, Mg2+-A13+-C1O4, Ni2+-A13+-C1- and Zn2+-A13+-C1-. Clays and Clay Minerals 23 (5): 369–75.Google Scholar
  72. Miyata, S. and Okada, A. 1977. Synthesis of hydrotalcite-like compounds and their physico-chemical properties the systems Mg2+-A13+-SO4 and Mg2+- A13+-Cr024-_ Clays and Clay Minerals 25: 14–18.Google Scholar
  73. Miyata, S. and Hirose, T. 1978. Adsorption of N2, 02, CO2 and H2 on hydrotalcite-like system: Mg2+-A13+-(Fe(CN)6)4-. Clays and Clay Minerals 26 (6): 441–47.CrossRefGoogle Scholar
  74. Miyata, S. 1983. Anion-exchange properties of hydrotalcite-like compounds. Clays and Clay Minerals 31 (4): 305–11.CrossRefGoogle Scholar
  75. Moneyron, J. E. 1990. Etude et mise en forme par sérigraphie de conducteurs protoniques lamellaires. Réalisation d’un capteur d’humidité. Université Blaise Pascal Thèse d’Université.Google Scholar
  76. Moneyron, J. E., de Roy, A., and Besse, J. P. 1990. Realization of hydrotalcite-type protonic conductor thick films by the screen-printing technique. Hybrid Circuits 22: 25–28.Google Scholar
  77. Moneyron, J. E., de Roy, A., and Besse, J. P. 1991a. Realization of a Humidity Sensor. Sensors and Actuators B4: 189–94.Google Scholar
  78. Moneyron, J. E., de Roy, A., and Besse., J. P. 199 lb. Realization of a humidity sensor based on the protonic conductor Zn2A1(OH)6C1.nH2O. Hybrid Circuits 24: 26–31.Google Scholar
  79. Moneyron, J.E., de Roy, A., and Besse, J. P. 1991c. Protonic conductivity of hydrotalcite-type compound thick films: Application to a humidity sensor. Solid State Ionics 46: 175–81.Google Scholar
  80. Nakamoto, K. 1986. Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons Inc. New-York: 4th ed.Google Scholar
  81. Narita, E., Kaviratna, P., and Pinnavaia, T. J. 1991. Synthesis of Heteropolyoxometalate Pillared Layered Double Hydroxides via Calcined Zinc-Aluminium Oxide Precursors. Chem. Lett: 805–08.Google Scholar
  82. Nickel, E. H. and Wildman, J. E. 1981. Hydrohonessite - A new hydrated Ni-Fe hydroxy-sulphate mineral: Its relationshop to honessite, carrboydite and minerals of the pyroaurite group. Miner. Mag. 44: 333–37.Google Scholar
  83. Nowacki, W. and Silverman, J.A. 1962. The crystal structure of Zn hydroxychloride II, Zn5(OH)8C12.H20. Z. Kristallogr. 117: 238–40.Google Scholar
  84. Nunan, J. G., Himelfarb, P. B., Herman, R. G., Klier, K., Bogdan, C.E., and Simmons, G. W. 1989. Methanol synthesis catalysts based on Cs/Cu/ZnO/M2O3 (M = Al, Cr, Ga): genesis from coprecipitated hydrotalcite-like precursors, solid-state chemistry, morphology, and stability. Inorg. Chem. 28: 3868–74.Google Scholar
  85. Parise, J. B. and Hyde, B. G. 1986. The structure of atacamite and its relationship to spinel. Acta Cryst. C42: 1277–80.CrossRefGoogle Scholar
  86. Park, Y., Kuroda, K., and Kato, C. 1989. Preparation of a layered double hydroxide-porphyrin intercalation compound. Chem. Lett.: 2057–58.Google Scholar
  87. Pastor-Rodriguez, J. and Taylor, H. F. W. 1971. Crystal structure of coalingite. Miner. Mag. 38: 286–94.Google Scholar
  88. Read, H. H. and Dixon, B. E. 1933. On stichtite from Cunningsburgh, Shetland Islands. Miner. Mag 23: 309–16.Google Scholar
  89. Reichle, W. T., Kang, S. Y., and Everhardt, D. S. 1986. The nature of the thermal decomposition of a catalycally active anionic clay mineral. J. Catal. 101: 352–59.Google Scholar
  90. Rius, J. and Allmann, R. 1984. The superstructure of the double layer mineral wermlandite [Mg7 (Al0.57Fe0.43)2(OH)18][(Ca0.6Mg0.4)(SO4)2(H2O)12 Z. Kristallogr. 168: 133–44.Google Scholar
  91. Ross, G. J. and Kodama, H. 1967. Properties of a synthetic magnesium-aluminium carbonate hydroxide and its relationship to magnesium-aluminium double hydroxide, manasseite and hydrotalcite. Amer. Miner. 52 (7/8): 1036–47.Google Scholar
  92. Roushet, P. G. and Taylor, H. F. W. 1969. Thermal decomposition of Sjögrenite and Pyroaurite. Chimia 23: 480–85.Google Scholar
  93. Sato, T. and Okuwaki, A. 1991. Intercalation of benzenecarboxylate ions into the interlayer of hydrotalcite. Solid State Ionics 45: 43–48.CrossRefGoogle Scholar
  94. Schöllhorn, R. and Otto, B. 1986. Co-operative anion exchange mechanism of layered transition metal hydroxide systems. J. Chem. Soc. Chem. Commun.: 1222–23.Google Scholar
  95. Schutz, A. and Biloen, P. 1987. Interlamellar chemistry of hydrotalcites. Polymerisation of silicate anions. J. of Solid State Chem. 68: 360–68.CrossRefGoogle Scholar
  96. Sema, C. J., Rendon, J. L., and Iglesias, J. E. 1982. Crystal-chemical study of layered [Al2Li(OH)6]+X-. nH2O. Clays and Clay Minerals 10 (3): 180–84Google Scholar
  97. Tatarinov, A. V., Sapozhnikov, A. N., Prokudin, S. G., and Frolova, L. P. 1985. Stichtite in serpentinites of the Terektinsky Ridge (Atlay).Zapiski Vses. Mineral. Obshchestva 114: 575–81.Google Scholar
  98. Taylor, H. F. W. 1969. Segregation and cation-ordering in sjSgrenite and pyroaurite. Miner. Mag. 37: 338–42.Google Scholar
  99. Taylor, H. F. W. 1973. Crystal structures of some double hydroxide minerals. Miner. Mag. 39: 377–89.Google Scholar
  100. Taylor, R. M. and McKenzie, R. 1980. The influence of aluminium on iron oxides. VI. The formation of Fe(II)-Al(lII) hydroxy-chlorides, -sulfates, and–carbonates as new members of the pyroaurite group and their significance in soils. Clays and Clay minerals 28: 179–87.CrossRefGoogle Scholar
  101. Taylor, R. M. 1980. Formation and properties of Fe(II)Fe(III) hydroxycarbonate and its possible significance in soil formation. Clay minerals 15: 369–82.Google Scholar
  102. Taylor, R. M., Schwertman, U. and Fechter, H. 1985. A rapid method for the formation of Fe(II) Fe(III) hydroxycarbonates. Clay Minerals 20: 147–51. Taylor, R. M. 1984. The rapid formation of crystalline double hydroxy salts and other compounds. Clay Miner. 19 (4): 591–603.Google Scholar
  103. Thevenot., F. 1989. Synthèse et caractérisation cristallochimique de précurseurs d’oxydes mixtes divisés: hydroxycarbonates de type hydrotalcite et phases dérivées. Université Blaise Pascal Thèse d’Université. Van Damme, H. 1990. Pillared layered structures. Co-ordinated European Activity on Pillared Layered Structures Technical annex.Google Scholar
  104. Woltermann, G. M. 1984. U.S. Patent 4 454 244: Ashland Oil Inc. June 12. Yamaoka, T., Abe, M., and Tsuji, M. 1989. Synthesis of Cu-Al hydrotalcite like compound and its ion exchange property. Mat. Res. Bull. 24: 1183–99.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • André de Roy
    • 1
  • Claude Forano
    • 1
  • Khalid El Malki
    • 1
  • Jean-Pierre Besse
    • 1
  1. 1.Laboratoire de Physico-Chimie des Matériaux, U.R.A.- C.N.R.S. n° 444Université Blaise PascalAubiere CedexFrance

Personalised recommendations