Advertisement

TEM Characterization of Pillared Rectorites

  • J. M. Dominguez
  • M. L. Occelli

Abstract

High resolution and analytical methods of electron microscopy have been used to characterize a sample of natural rectorite before and after pillaring with Al203-clusters. The regular 1:1 interstratification of mica-like and montmorillonite-like layers yield (variable) interlayer spacings of about 28Å. Nonuniform pillar distributions have been attributed to layer charge heterogeneity and to pillar deformation. Other defects, like stacking faults, layer termination edges, and bent stacks were characterized by electron diffraction. The true chemical composition was determined by EDS on the basis of crystal-by-crystal analysis.

Keywords

Energy Dispersive Spectroscopy Electron Diffraction Pattern Interlayer Spacing Charge Density Wave Microporous Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Guan, E. Min, and Z. Yu; U.S. Patent 4, 757040 (1987).Google Scholar
  2. 2.
    J. Guan, E. Min, and Z. Yu; Eur. Patent 88300815 (1986).Google Scholar
  3. 3.
    M. L. Occelli, In Scientific Basis for the Preparation of Heterogeneous Catalysts (1990)Google Scholar
  4. 4.
    J. Guan, E. Min, Z. Yu, H. Zheng, and Y. Liang. ChinaJapan-U.S. Symp. Heterog. Catal. Relat. Energy Probl., BO2C, 7 pp. (1982).Google Scholar
  5. 5.
    J. M. Dominguez, and M. L. Occelli. 12th North American Meet. Catal. Soc., D17, Lx., KY (1991).Google Scholar
  6. 6.
    J. H. Ahn and D. R. Peacor; Clays and Clay Minerals. 34: 165–179 (1986a)CrossRefGoogle Scholar
  7. S. Ebert, R. Triki, J. Microscopie 15, III (1972).Google Scholar
  8. 7.
    R. E. Klementidis and D. R. McKinnon. Clays and Clay Minerals 34: (2): 155–164 (1986).CrossRefGoogle Scholar
  9. 8.
    H. Vali and H. M. Köster. Clay Miner. 21: 827–859 (1986).CrossRefGoogle Scholar
  10. 9.
    J. C. H. Spence. “Experimental High Resolution Electron Microscopy, m” Clarendon Press, Oxford, U.K. 370 pp. (1981).Google Scholar
  11. 10.
    T. Tanji and H. Hashimoto; Acta Ciyst. A34: 453 (1978).Google Scholar
  12. 11.
    H. Kodama; Am. Miner. Vol. 51, 1035 (1966).Google Scholar
  13. 12.
    W. F. Bradley. Am. Miner. 35: 590 (1950).Google Scholar
  14. 13.
    M. Sato, K. Oinuma, and K. Kobayashi. Nature, Lond. 208, 6 (1965).Google Scholar
  15. 14.
    T. R. McKee, and J. L. Brown. Minerals in Soil Environments J. B. Dixon and S. B. Weed, eds., p. 809, Soil Science Soc. of America, Madison, WI, (1977).Google Scholar
  16. 15.
    G. Johansson. Acta Chem. Scand. 14: 771 (1969).Google Scholar
  17. 16.
    J. Shabtai and N. Lahay. U.S. Patent 4, 216–188 (1980).Google Scholar
  18. 17.
    J. W. Eddington. “Electron Diffraction in the Electron Microscope, pp. 74. Cambridge, U.K. (1975).Google Scholar
  19. 18.
    J. A. Wilson, F. J. DiSalvo, and S. Mahajan; Phys. Rev. Lett. 32 (16): 882 (1974).CrossRefGoogle Scholar
  20. 19.
    R. C. Reynolds, Jr. Am. Miner. 52: 661 (1967).Google Scholar
  21. 20.
    J. A. Wilson, F. J. Di Salvo, and S. Mahajan. Advan. Phys. 24: 117 (1975).CrossRefGoogle Scholar
  22. 21.
    H. Vali and H. M. Köster. Clay Miner. 21: 827 (1986).CrossRefGoogle Scholar
  23. 22.
    M. L. Occelli, R. Innes, F. S. S. Hwu, and J. W. Hightower. Appl. Catal. 14: 69 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • J. M. Dominguez
    • 1
    • 2
  • M. L. Occelli
    • 1
    • 2
  1. 1.Inv. AplicadaInstituto Mexicano del PetroleoMexico 14, D.F.Mexico
  2. 2.Unocal CorporationBreaUSA

Personalised recommendations