Ga13, GaAl12, and Al13 Polyoxocations and Pillared Clays

  • Susan M. Bradley
  • Ronald A. Kydd
  • Raghav Yamdagni
  • Colin A. Fyfe


Studies of the hydrolysis of aqueous gallium and mixed gallium/aluminum solutions have resulted in the synthesis of Ga13 and GaAl12 cations which are isostructural with the Al13 species which has been the principal ion utilized in clay mineral pillaring studies. These ions have been characterized through the use of solution NMR studies, as well as MAS NMR, powder X-ray diffraction and infrared investigations of their sulfate salts. Their relative stabilities in solution have been found to follow the order Ga13 « Al13 « GaAl12, which also appears to correlate with the order of increasing symmetry of their overall structures.


Clay Mineral Microporous Material Pillared Clay All3 Species Bronsted Acid Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, L.C.W. and Figgis, J.S. 1970. A New Fundamental Type of Inorganic Complex: Hybrid Between Heteropoly and Conventional Coordination Complexes. Possibilities for Geometrical Isomerisms in 11-, 12-, 17- and 18-Heteropoly Derivatives. Journal of the American Chemical Society, 92, 3794.CrossRefGoogle Scholar
  2. Bertram, R. and Schönherr, S., 1984. IR-spektroskopische Charakterisierung des Dodekaaluminogermaniumsulfates. Zeitschrift für Chemie, 24: 225.CrossRefGoogle Scholar
  3. Bradley, S.M. and Kydd, R.A., 1991. A Comparison of the Thermal Stabilities of Ga13, GaAl12 and A113 Pillared Clay Minerals. Catalysis Letters, 8: 185.CrossRefGoogle Scholar
  4. Bradley, S.M., Kydd, R.A. and Yamdagni, R., 1990a. A Study of the Hydrolysis of Mixed A13+ and Ga3+ Aqueous Solutions: Evidence for the Formation of an Extremely Stable GaO4A112(OH)24–20)127+ Polyoxocation. Magnetic Resonance in Chemistry, 28: 746.CrossRefGoogle Scholar
  5. Bradley, S.M., Kydd, R.A. and Yamdagni, R., 1990b. Comparison of the Hydrolyses of Gallium(III) and Aluminum(III) Solutions by Nuclear Magnetic Resonance Spectroscopy. Journal of the Chemical Society, Dalton Transactions, 2653Google Scholar
  6. Bradley, S.M., Kydd, R.A. and Yamdagni, R., 1990c. The Detection of a New Polymeric Species Formed through the Hydrolysis of Gallium(III) Salt Solutions. Journal of the Chemical Society, Dalton Transactions, 413.Google Scholar
  7. Bradley, S.M. et al., 1991. Characterization of the GaO4A112(OH)24(H2O)127+ Polyoxocation using MAS NMR and Infrared Spectroscopies, and Powder X-Ray Diffraction. Inorganic Chemistry, to be published.Google Scholar
  8. Christiano, S.P., Wang, J. and Pinnavaia, T.J., 1985. Intercalation of Niobium and Tantalum M6C112n+ Cluster Cations in Montmorillonite: A New Route to Pillared Clays. Inorganic Chemistry, 24: 1222.CrossRefGoogle Scholar
  9. Figueras, F., 1988. Pillared Clays as Catalysts. Catalysis Reviews-Science and Engineering, 30 (3): 457.CrossRefGoogle Scholar
  10. Johansson, G., 1960. On the Crystal Structure of a Basic Aluminium Sulfate and the Corresponding Selenate. Acta Chemica Scandinavica, 14 (3): 769.CrossRefGoogle Scholar
  11. Johansson, G., 1962. The Crystal Structure of a Basic Aluminium Selenate. Arkiv for Kemi, 20: 305.Google Scholar
  12. Johansson, G., 1963. On the Crystal Structure of the Basic Aluminium Sulfate 13Al2O3.6SO3.xH2O. Arkiv for Kemi, 20: 321.Google Scholar
  13. Keggin, J.F., 1933. Structure of the Molecule of 12-Phosphotungstic Acid. Nature, 131: 908.CrossRefGoogle Scholar
  14. Keggin, J.F., 1934. Structure and Formula of 12-Phosphotungstic Acid. Proceedings of the Royal Society A, 144: 75.CrossRefGoogle Scholar
  15. Kunwar, A.C. et al.,1984. Solid State Aluminum-27 NMR Studies of Tridecameric Al-Oxo-Hydroxy Clusters in Basic Aluminum Selenate, Sulfate, and the Mineral Zunyite. Journal of Magnetic Resonance,60:467.Google Scholar
  16. Ming-Yuan, H., Zhonghui, L. and Enze, M., 1988. Acidic and Hydrocarbon Catalytic Properties of Pillared Clays. Catalysis Today, 2: 321.CrossRefGoogle Scholar
  17. Mowry, J.R., Anderson, R.F. and Johnson, J.A., 1985. Process Make Aromatics from LPG. Oil and Gas Journal, 83 (48): 128.Google Scholar
  18. Muller, D. et al., 1981. Determination of the Aluminum Coordination in Aluminum Oxygen Compounds by Solid-State High-Resolution 27M NMR. Chemical Physics Letters, 79: 59.CrossRefGoogle Scholar
  19. Occelli, M.L., 1988. Surface Properties and Cracking Activity of Delaminated Clay Catalysts. Catalysis Today, 2: 239.Google Scholar
  20. Parry, E.P., 1969. An Infrared Study of Pyridine Adsorbed on Acidic Solids: Characterization of Surface Acidity. Journal of Catalysis, 2: 371.CrossRefGoogle Scholar
  21. Pinnavaia, T.J., 1983. Intercalated Clay Catalysts. Science, 220: 365.CrossRefGoogle Scholar
  22. Pope, M.T., 1983. Heteropoly and Isopoly Oxometalates. New York: Springer-Verlag.Google Scholar
  23. Schönherr, S. et al. 1981. Darstellung and Charakterisierung eines Wasserlöslichen A113O40-Chlorides. Zeitschrift fib’ Anorganische and Allgemeine Chemie, 476: 188.CrossRefGoogle Scholar
  24. Tarte, P., 1963. Applications nouvelles de la Spectrométrie infrarouge à des problèmes de Cristallochimie. Silicates Industriels, 28: 345.Google Scholar
  25. Tarte, P., 1964. The Determination of Cation Co-ordination in Glasses by Infra-red Spectroscopy. In Physics of Non-Crystalline Solids, ed. Prins, J.A. p. 549. Proceedings of International Conference, Delft, Netherlands.Google Scholar
  26. Tarte, P., 1967. Infra-red Spectra of Inorganic Aluminates and Characteristic Vibrational Frequencies of A1O4 Tetrahedra and A1O6 Octahedra. Spectrochimica Acta, 23A: 2127.CrossRefGoogle Scholar
  27. Thomas, B., Görz, H. and Schönherr, S., 1987. Zum NMR-spektroskopischen Nachweis von Dodecaaluminogallium-Ionen. Zeitschrift für Chemie, 27: 183.CrossRefGoogle Scholar
  28. Van Olphen, H. and Fripiat, J.J., 1979. Data Handbook for Clay Materials and other Non-Metallic Minerals. New York: Pergamon Press.Google Scholar
  29. Vaughan, D.E.W., 1988. Recent Developments in Pillared Interlayered Clays. In ACS Symp. Ser. Perspectives in Molecular Sieve Science, 368: 308.Google Scholar
  30. v. Lampe, V.F. et al.,1982. Vergleichende VAl-NMR-Untersuchungen am Mineral Zunyit und basischen Aluminium-Salzen tridekameren Al-oxohydroxo-aquo-Kationen. Zeitschrift fir Anorganische und Allgemeine Chemie,489:16.Google Scholar
  31. Ward, J.W., 1968. The Ratio of Absorption Coefficients of Pyridine Adsorbed on Lewis and Brönsted Acid Sites. Journal of Catalysis, 11: 271.CrossRefGoogle Scholar
  32. Yamanaka, S., Yamashita, G. and Hattori, M., 1980. Reaction of HydroxyBismuth Polycations with Montmorillonite. Clays and Clay Minerals, 28: 281.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Susan M. Bradley
    • 1
  • Ronald A. Kydd
    • 1
  • Raghav Yamdagni
    • 1
  • Colin A. Fyfe
    • 2
  1. 1.Department of ChemistryUniversity of CalgaryCalgaryCanada
  2. 2.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations