Advertisement

Oxygen Adsorption Properties of Microporous Silica Derived from Layered Siloxene by Oxidation

  • S. Yamanaka
  • H. Itoh
  • M. Hattori

Abstract

Layer structured siloxene prepared by the reaction of CaSi2 with hydrochloric acid was further oxidized by a treatment with water. During this treatment, the Si-Si and the Si-H bonds of the siloxene were oxidized to Si-O-Si and Si-OH bonds, respectively, and the interlayers were cross-linked by the condensation of the Si-OH groups. The resulting compounds have high surface areas (400–600 m2/g) with pores in the micropore to mesopore ranges. The compounds calcined in a vacuum up to 1000°C keep the high surface area and show peculiar electron spin resonance (ESR) centers on adsorption of oxygen, which are attributed to the formation of silicon dangling bonds. The ESR centers disappear reversibly on desorption of oxygen.

Keywords

Electron Spin Resonance Electron Spin Resonance Spectrum Electron Spin Resonance Signal Dangling Bond Microporous Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bielanski, A. and Haber, J. 1991. Oxygen in Catalysis. New York: Marcel Dekker.Google Scholar
  2. Böhm, J. and Hassel, O. 1927. The crystal structure of calcium silicide. Z. Anorg. Allg. Chem. 160: 152–164.CrossRefGoogle Scholar
  3. Evers, J., Oehlinger, G., and Weiss, A. 1977. Effect of pressure on the structures of divalent metal disilicides (calcium, europium, strontium). J. Solid State Chem. 20: 173–81.CrossRefGoogle Scholar
  4. Feigl, F. J., Fowler, W. B., Yip, K. L 1974. Oxygen vacancy model for the E 1 center in SiO 2. Solid State Commun. 14: 225–229.CrossRefGoogle Scholar
  5. Gregg, S. J. and Sing, K. S. W. 1982. Adsorption, Surface Area and Porosity. London: Academic Press.Google Scholar
  6. Griscom, D. L 1978. Defects in amorphous insulators. J. Non-Cryst. Solids 31: 241–266.CrossRefGoogle Scholar
  7. Griscom, D. L 1980. Electron spin resonance in glasses. J. Non-Cryst. Solids 40: 211–272.CrossRefGoogle Scholar
  8. Grunthaner, F. J., Grunthaner, P. J., Vasquez, R. P., Lewis, B. F., and Maserjian, J. 1979. Local atomic and electronic structure of oxide/GaAs and SiO 2 interfaces using high-resolution XPS. J. Vac. Sci. Technol. 16: 1443–1453.CrossRefGoogle Scholar
  9. Hengge, E. 1962. Color and fluorescence of cyclic Si compounds II. Fluorescence and color of siloxene and its derivatives. Chem. Ber. 95: 648–657.CrossRefGoogle Scholar
  10. Hengge, E. 1967. Siloxene and sheetlike silicon subcompounds. Fortschr. Chem. Forsch. 9: 145–164.CrossRefGoogle Scholar
  11. Hengge, E. 1974. Polymeric compounds with Si-Si bond systems. Topics in Current Chemistry 51: 95–112.CrossRefGoogle Scholar
  12. Holzenkämpfer, E., Richter, F.-W., Stuke, J., and Voget-Grote, U., 1979. Electron spin resonance and hopping conductivity of a-SiO x. J. Non-Cryst. Solids, 32: 327–338.CrossRefGoogle Scholar
  13. Janzon, K. H., Schäfer, H., Weiss, A. 1970. Alkali earth disilicides. Z. Anorg. Allg. Chem. 372: 87–99.CrossRefGoogle Scholar
  14. Kautsky, H. 1921. Some unsaturated silicon compounds. Z. Anorg. Allg. Chem. 117: 209–242.CrossRefGoogle Scholar
  15. Kautksy, H. 1952. Two-dimensional crystal structures in compounds of silicon. Z. Naturforsch. 7b: 174–183.Google Scholar
  16. Kautsky, H. and Pfleger, H. 1958. Lepidoids IL Determinations of the surfaces of lepidoidic structures of adsorption of gases. Z. Anorg. Allg. Chem. 295: 206–217.CrossRefGoogle Scholar
  17. Lucovsky, G. and Pollard, W. B. 1983. Local bonding of oxygen and hydrogen in a-Si:H::O thin films. J. Vac. Sci. Technol. A1: 313–316.Google Scholar
  18. Lunsford, J. H. 1973. ESR of adsorbed oxygen species. Catalysis Rev. 8: 135–157.CrossRefGoogle Scholar
  19. McCreay, W. J. 1958. Pure calcium. J. Metals. 10: 615–617.Google Scholar
  20. Oliver, D. W., Brower, G. D., and Horn, F. H. 1972. Cold metal crucible system for synthesis, zone refining, and Czochralski crystal growth of refractory metals and semiconductors. J. Cryst. Growth 12: 125–131.CrossRefGoogle Scholar
  21. Schäfer, H., Eisenmann, B., and Müller, W. 1973. Zintl phases: Transitions between metallic and ionic bonding. Angew. Chem. Internat. Edit. Engl. 12: 694–712.CrossRefGoogle Scholar
  22. Stapelbroek, M., Griscom, D. L, Friebele, E. J., and Sigel, Jr., G. M. 1979. Oxygen-associated trapped-hole centers in high purity fused silicas. J. Non-Cryst. Solids 32: 313–326.CrossRefGoogle Scholar
  23. Ubara, H., Imura, T., Hiraki, A., Hirabayashi, I. and Morigaki, K. 1983. Structural change from crystalline to amorphous states in siloxene by thermal annealing. J. Non-cryst. Solids, 59/60: 641–644.Google Scholar
  24. Vitko, Jr., J. 1978. ESR studies of hydrogen hyperfine spectra in irradiated vitreous silica. J. Appl. Phys. 49: 5530–5535.CrossRefGoogle Scholar
  25. Weiss, A., Beil, G., and Meyer, H. 1979. The topochemical reaction of CaSi 2 to a two-dimensional subsiliceous acid Si 6 H 3 (OH) 3 (= Kautsky’s Siloxene). Z Naturforsch. 34B: 25–30.Google Scholar
  26. Wöhler, F. 1863. Silicon compounds with oxygen and hydrogen. Liebigs Ann. Chem. 127: 257–274.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • S. Yamanaka
    • 1
  • H. Itoh
    • 1
  • M. Hattori
    • 1
  1. 1.Hiroshima UniversityJapan

Personalised recommendations