Microporous Pillared Mica with Cation-incorporated Silicate Surfaces

  • Kazuo Urabe
  • Hiroaki Sakurai
  • Kazuki Kawabe
  • Yusuke Izumi


The interlayer cations, such as La3+ and Ca2+, were irreversibly fixed by heating onto the exchange sites of silicate layer in fluor-tetrasilicic mica (TSM) as an expandable synthetic mica, which has a large layer charge and octahedral vacancies. The microporous pillared mica was prepared by the subsequent cation exchange of ’Al13’ Keggin ion. The resulting compounds worked as efficient solid acid catalysts and their catalytic activities varied widely, depending on the type of modifying cations. The fixation mode was classified into five groups by the size and valence of the modifying cations. The fixation of Ca2+ did not occur on other clays such as montmorillonite and taeniolite.


Silicate Layer Temperature Program Desorption Fixation Mode Microporous Material Pillared Clay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brindley, G. W., and J. Lemaitre. 1987. Thermal, oxidation and reduction reactions of clay minerals. In Chemistry of Clays and Clay Minerals, A. C. D. Newman, (ed.), pp. 319–70. London: Mineralogical Society.Google Scholar
  2. Brody, J. F., J. W. Johnson, G. W. McVicker, and J. J. Ziemiak. 1989. Olefin isomerization over an alumina-pillared fluoromica catalyst. Solid State Ionics 32/33:350–3.Google Scholar
  3. Brown, D. R., and L. Kevan. 1988. Aqueous coordination and location of exchangeable Cu e+ cations in montmorillonite clay studied by electron spin resonance and electron spin-echo modulation. J. Amer. Chem. Soc. 110 (9):2743–8.Google Scholar
  4. Hartman, H., G. Sposito, A. Yang, S. Manne, S. A. C. Gould, and R. K. Hansma. 1990. Molecular-scale imaging of clay mineral surfaces with the atomic force microscope. Clays Clay Miner. 38 (4):337–42.Google Scholar
  5. Hofmann, U., and J. Endell. 1939. Die Abhängigkeit des Kationenaustausches und der Quellung bei Montmorillonit von der Vorerhitzung (Auszug). Z. angew. Chem. 52 (50):708–9.Google Scholar
  6. Hofmann, U., and R. Klemen. 1950. Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung. Z. Anorg. Allg. Chem. 262: 95–9.Google Scholar
  7. Jie, G. J., M. E. Ze, and Y. Zhiquing. 1986. A class of pillared interlayered clay molecular sieve products with regularly interstratified mineral structure. Eur. Pat. Appl. #197012.Google Scholar
  8. Johnson, J. W., and J. F. Brody. 1988. Pillared clays and micas. In Microstructure and Properties of Catalysts (Mater. Res. Soc. Proc., vol. 111), M. M. J. Treacy, J. M. Thomas, and J.M. White, (eds.), pp. 257–66. Pittsburgh: Materials Research Society.Google Scholar
  9. Kitajima, K., and N. Daimon. 1975. Synthesis of Na-fluor-tetrasilicic mica [NaMg z 5 (Si 4 010)F 2 ] and its swelling characteristics. Nippon Kagaku Kaishi (in Japanese) (6):991–5.Google Scholar
  10. Mitchell, I. V. (ed.). 1990. Pillared Layered Structures: Current Trends and Applications. London & New York: Elsevier.Google Scholar
  11. Mozas, T., S. Bruque, and A. Rodriguez. 1980. Effect of thermal treatment on lanthanide montmorillonite: Dehydration. Clays Clay Miner. 15: 421–8.Google Scholar
  12. Sakurai, H., K. Urabe, and Y. Izumi. 1988. New acidic pillared catalysts prepared from fluor-tetrasilicic mica. J. Chem. Soc., Chem. Commun. 1519–20.Google Scholar
  13. Sakurai, H., K. Urabe, and Y. Izumi. 1989. Acidity enhanced pillared clay catalysts. Modification of exchangeable sites on fluor-tetrasilicic mica by the fixed interlayer cations. Bull. Chem. Soc. Jpn. 62 (10):3221–8.Google Scholar
  14. Sakurai, H., K. Urabe, and Y. Izumi. 1990. Pillared tetrasilicic mica catalysts modified by fixed interlayer cations. Classification of fixation mode by cations. Bull. Chem. Soc. Jpn. 63 (5):1389–95.Google Scholar
  15. Sakurai, H., K. Urabe, and Y. Izumi. 1991. Pillared tetrasilicic mica catalysts having fixed interlayer Ca ions. Comparison with other clays. Bull. Chem. Soc. Jpn. 64 (1): 227–35.CrossRefGoogle Scholar
  16. Suzuki, K., M. Kondo, and R. Horigome. 1977. The fixation of exchangeable cations in bentonite by heating (in Japanese). Paper read at 21st Annual Meeting of the Clay Science Society of Japan, 1977, at Government Industrial Research Institute of Nagoya, no. 12, pp. 18 of Abstracts.Google Scholar
  17. Thomas, J. M. 1982. Sheet silicate intercalates: New agents for unusual chemical conversions. In Intercalation Chemistry, M.S. Whittingham, and A.J. Jacobson, (eds.), pp. 55–99. New York: Academic Press.Google Scholar
  18. Urabe, K., H. Sakurai, and Y. Izumi. 1986. Pillared synthetic saponite as an efficient alkylation catalyst. J. Chem. Soc., Chem. Commun. 1074–6.Google Scholar
  19. Urabe, K., I. Kenmoku, K. Kawabe, and Y. Izumi. 1991. Talc-derived pillared clay as an acidity-tunable catalyst. J. Chem. Soc., Chem. Commun. 867–9.Google Scholar
  20. Yamanaka, S., and G. W. Brindley. 1979. High surface area solids obtained by reaction of montmorillonite with zirconyl chloride. Clays Clay Miner. 27 (2): 119–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Kazuo Urabe
    • 1
  • Hiroaki Sakurai
    • 1
  • Kazuki Kawabe
    • 1
  • Yusuke Izumi
    • 1
  1. 1.Nagoya UniversityJapan

Personalised recommendations