Synthesis of Dioctahedral 2:1 Layer Silicates in an Acid and Fluoride Medium

  • Laurent Huve
  • Ronan Le Dred
  • Daniel Saehr
  • Jacques Baron


The dioctahedral 2:1 layer silicates reported in the literature are prepared by either hydrothermal treatment of a neutral to basic aluminosilicated hydrogel, hydrothermal treatment of natural minerals, or by the melting of a mixture of miscellaneous reagents in the absence of water. Hydrothermal synthesis is the most commonly used method. Hydroxide ions are involved as a mineralizing or mobilizing agent of the structural elements. Fluoride ions are also a mineralizing agent, not only in basic, but also in acid media. The composition of the aluminosilicated hydrogel is similar to that of the desired layer silicate, and includes fluoride ions. Its pH is between 1 and 7. After a maturing stage at room temperature, the hydrothermal treatment was carried out at a temperature around 220°C. Well-crystallized and virtually pure dioctahedral 2:1 layer silicates were thus prepared in an acid and fluoride medium. Their general formula is Mx(Al2)(Si4-xAlx)O10((OH)2-yFy), (for a half-unit cell) with x being a value between 0 and 0.9 and y a value between 0 and 2. The substitution of fluorine atoms for hydroxyl groups increases the thermal stability. These layer silicates are the first stage toward the synthesis of pillared clays.


Nuclear Magnetic Resonance Layer Silicate Nuclear Magnetic Resonance Spectroscopy Magic Angle Spinning Microporous Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, R. P., and Moreno, E. C. 1971. Stability constants of aluminium fluoride complexes. Talanta 18: 873–80. Pergamon Press.CrossRefGoogle Scholar
  2. Barrer, R. M. and Dicks, L. W. R. 1966. Chemistry of soil minerals. Part III: Synthetic micas with substitutions of NH4 for K, Ga for Al and Ge for Si. J. Chemical Society (A): 1379–85.Google Scholar
  3. Barrer, R. M. and Dicks, L. W. R. 1967. Chemistry of soil minerals. Part IV: Synthetic alkylammonium montmorillonites and hectorites. J. Chemical Society (A): 1523–29.Google Scholar
  4. Barrer, R. M. and Marshall, D. J. 1964. Hydrothermal chemistry of silicates. Part XII: Synthetic strontium aluminosilicates. J. Chemical Society (A): 485–97.Google Scholar
  5. Baur, E. 1911. Über hydrothermale Silikate. Zeitschrift für Anorganische Chemie 72: 119–61.CrossRefGoogle Scholar
  6. Brownstein, S. 1980. Complex fluoroanions in solution. Complexes of silicon, germanium and titanium tetrafluorides with simple anions. Canadian J. Chemistry 58: 1407–11.CrossRefGoogle Scholar
  7. Caullet, P. and Guth, J. L. 1989. Observed and calculated silicate and aluminosilicate oligomer concentrations in alkaline aqueous solutions. 196th National Meeting of the American Chemical Society, Los Angeles, California, September 25–30, 1988 in Zeolite Synthesis, Ocelli, M. L. and Robson, H. E. eds, ACS Symposium Series, 398 (6): 83–7.Google Scholar
  8. De Kimpe, C. R. 1976. Formation of phyllosilicates and zeolites from pure silica alumina gels. Clays and Clay Minerals 24: 200–2–07.Google Scholar
  9. Delmotte, L. et al. 1990. 19F MAS NMR studies of crystalline microporous solids synthesized in the fluoride medium. Zeolites 10 (8): 778–83.CrossRefGoogle Scholar
  10. Diddams, P.A. et al. 1984. Synthesis, Characterization and Catalytic Activity of Beidellite-Montmorillonite Layered Silicates and their Pillared Analogues. J. Chemical Society (A) Chemical Communications: 1340–42.Google Scholar
  11. Docker, C. 1888. Ueber Glimmerbildung durch Zusammenschmelzen sowie weitere Silikatsynthesen. Neues Jahrbuch für Mineralogie und Petrographie 1: 179.Google Scholar
  12. Grandquist, W. T., Hoffman, G. W., and Boteler, R. C. 1972. Clay mineral synthesis. III: Rapid hjydrothermal crystallization of an aluminian smectite. Clays and Clay Minerals 20: 323–29.CrossRefGoogle Scholar
  13. Grandquist, W. T. and Township, M. 1966. Synthetic silicate minerals.US Patent 3, 252, 757.Google Scholar
  14. Greene-Kelly, R. 1953. The identification of montmorillonoids in clays. J. Soil Science 4: 233–37.Google Scholar
  15. Guth, J. L. et al. 1984 a. Nouvelle silice microporeuse cristallisée, son procédé de préparation et ses applications. Fr. Patent Applied 84, 07773.Google Scholar
  16. Guth, J. L. et al. 1984 b. Nouveau procédé de synthèse de zéolites du type aluminosilicate, produits obtenus par ce procédé et utilisation de ces produits. Fr. Patent Applied 84, 11521.Google Scholar
  17. Guth, J.L. et al. 1985. Nouveau procédé de synthèse de zéolites du type borosilicates, produits obtenus et leur utilisation. Fr. Patent Applied 85, 07878.Google Scholar
  18. Guth, J.L. et al. 1989. Zeolite synthesis in the presence of fluoride ions: A comparison with conventional synthesis methods. 196th National Meeting of the American Chemical Society, Los Angeles, California, September 2530, 1988 in Zeolite Synthesis, Ocelli, M. L. and Robson, H. E. ed, ACS Symposium Series 398 (13): 176–95.Google Scholar
  19. Hoffmann, U. and Klemen, E. 1950. Loss of exchangeability of lithium ions in bentonite on heating. Zeitschrift für anorganische und allgemeine Chemie 262: 95–9.CrossRefGoogle Scholar
  20. Jackel, R. D. 1952. A Bibliography on the High-Temperature Synthesis of Mica. Electrotechnical Laboratory, U.S. Bureau of Mines.Google Scholar
  21. Joly, J.F. et al. 1991. Nouveaux phyllosilicates 2: 1 dioctaédriques et leur procédé de préparation. Fr. Patent 91–03 236Google Scholar
  22. Kinsey, R.A. et al. 1985. High resolution aluminium-27 and silicon-29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals. American Mineralogist 70: 537–48.Google Scholar
  23. Kloprogge, J. T., Jansen, J. B. H., and Geus, J. W. 1990. Characterization of synthetic Na-beidellite. Clays and Clay Minerals 38: 409–14.CrossRefGoogle Scholar
  24. Miles, N. and De Kimpe, C. R. 1985. Application of glycerol/ethanol solutions for solvation of smectites dried on glass slides. Canadian J. Soil Science 65: 229–332.CrossRefGoogle Scholar
  25. Plee, D., Gatineau, L., and Fripiat, J. J. 1987. Pillaring processes of smectites with and without tetrahedral substitution. Clays and Clay Minerals 35: 81–8.CrossRefGoogle Scholar
  26. Roy, R. 1952. Synthetic Mica-A Critical Examination of the Literature? Pennsylvania State College,School of Mineral Industries.Google Scholar
  27. Salama, S. N. 1990. Catalytic effect of fluoride ions on crystallization and phase transformation of some silicate systems. Silicates Industriels 55 (5–6): 171–76.Google Scholar
  28. Sanz, J. and Serratosa, J. M. 1984. 29Si and 27A1 high-resolution MAS-NMR spectra of phyllosilicates. J. American Chemical Society 106: 4790–93.CrossRefGoogle Scholar
  29. Schutz et al. 1987. Preparation and characterization of bidimensional zeolitic structures obtained from synthetic beidellite and hydroxy-aluminium solutions. Clays and Clay Minerals 35: 251–61.CrossRefGoogle Scholar
  30. Siffert, B. and Wey, R. 1961. Sur la synthèse de la kaolinite à température ordinaire. Compte Rendu à l’Académie des Sciences, Paris 253: 142–44.Google Scholar
  31. Smith, K.A. et al. 1983. High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-forming silicates. American Mineralogist 68: 1206–15.Google Scholar
  32. Thompson, J. G. 1984. 29Si and 27M nuclear magnetic resonance spectroscopy of 2:1 clay minerals. Clay Minerals 19: 229–36.CrossRefGoogle Scholar
  33. Torii, K. and Iwasaki, T. 1986. Synthesis of new toctahedral Mg-smectite. Chemical Letters: 2021–24.Google Scholar
  34. Torii, K. and Iwasaki, T. 1987. Preparation of swelling saponite-type smectite silicates. J. Patent 87,292, 615.Google Scholar
  35. Tsunashima, A. et al. 1975. Hydrothermal synthesis of amino acidmontmorillonites and ammonium micas. Clays and Clay Minerals 23: 115–18.CrossRefGoogle Scholar
  36. Weiss, A. W., Altaner, S. P. and Kirkpatrick, R. J. 1987. High-resolution 29Si MIR spectroscopy of 2: 1 layer silicates: Correlations among chemical shift, structural distortions, and chemical variations. American Mineralogist 72: 935–42.Google Scholar
  37. Wey, R. 1963. La formation des argiles. Réactions chimiques entre la silice en solution et des ions basiques. Communication au Colloque de la Schlucht. March 12–14, 1963.Google Scholar
  38. Wright, A. C., Grandquist, W. T., and Kennedy, J. V. 1972. Catalysis by layer lattice silicates. I. The structure and thermal modifications of a synthetic ammonium dioctahedral clay. J. Catalysis 25: 65–80.CrossRefGoogle Scholar
  39. Yoder, H. S. and Eugster, H. P. 1955. Synthetic and natural muscovites. Geochimica et Cosmochimica Acta 8: 225–80.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Laurent Huve
    • 1
  • Ronan Le Dred
    • 1
  • Daniel Saehr
    • 1
  • Jacques Baron
    • 1
  1. 1.Laboratoire de Matériaux Minéraux, Unité Associée au Centre National de la Recherche Scientifique N° 0428Ecole Nationale Supérieure de Chimie de MulhouseMulhouse CedexFrance

Personalised recommendations