Approaches to the Synthesis of Supergallery Pillared Clays

  • Thomas J. Pinnavaia


Recent advances in the design of microporous pillared solids with “supergallery” structures are discussed. Supergallery derivatives are defined as intercalates in which the interlayer thickness is substantially larger than the thickness of the host layer. Three general classes of hosts are considered, namely, 2:1 smectite clays,layered double hydroxides (LDHs), and layered silicic acids. The direct intercalation of metal oxide sol particles can be a fruitful route to supergallery smectites, especially when the particles are molecularly regular, as in the tubular silicate imogolite. Direct intercalation of Keggin anions of the type XM12O40 n-afford supergallery LDH derivatives in which the gallery height (~9.8 Ǻ) is twice as large as the host layers (~4.8 Ǻ). Finally, the reaction of metal alkoxides with expanded derivatives of layered silicic acids, such as H+ magadiite, is a promising new route to supergallery pillared forms of these materials.


Layered Double Hydroxide Metal Alkoxide Microporous Material Pillared Clay Smectite Clay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrer, R. M. and MacLeod, D. M. 1955. Trans. Faraday Soc. 51: 1290.CrossRefGoogle Scholar
  2. 2.
    Barrer, R. M. 1989. Pure Appl. Chem. 61: 1903.Google Scholar
  3. 3.
    Moini, A. and Pinnavaia, T. J. 1988. Solid State Ionics 26: 119.CrossRefGoogle Scholar
  4. 4.
    Kim, H., Jin, W., Lee, S., Thou, P., Pinnavaia, T. J., Mahanti, S. D., and Solin, S. A. 1988. Phys. Rev. Leu. 60: 2168.CrossRefGoogle Scholar
  5. 5.
    Moini, A., Pinnavaia, T. J., Thiyagarajan, P., and White, J. W. 1988. J. Appl. Cryst. 21: 840CrossRefGoogle Scholar
  6. Moini, A., Pinnavaia, T. J., and Thiyagarajan, P. 1990. Mat. Res. Soc. Symp. Proc. 166: 391.CrossRefGoogle Scholar
  7. 6.
    Cradwick, P. D., Fanner, V. C., Russell, J. D., Mason, C. R., Wads, K., and Yoshinaga, N. 1972. Nat. Phys. Sci. 240: 187.CrossRefGoogle Scholar
  8. 7.
    Farmer, V. C., Adams, M. J., Fraser, A. R., and Palmieri, F. 1983 Clay Miner. 18: 459.CrossRefGoogle Scholar
  9. 8.
    Adams, M. J. 1980. J. Chromatog. 188: 97.CrossRefGoogle Scholar
  10. 9.
    Egashua, K. and Amoine, S. 1974. Clay Sci. 4: 231.Google Scholar
  11. 10.
    Wada, K. and Henni, T. 1972. Clay Sci. 4: 127Google Scholar
  12. 11.
    Johnson, I. J., Werpy, T. A., and Pinnavaia, T. J. 1988. J. Amer. Chem. Soc. 110: 8545.CrossRefGoogle Scholar
  13. 12.
    Werpy, T. A., Michot, L., and Pinnavaia, T. J. 1989. Clay Research 8: 47.Google Scholar
  14. 13.
    Werpy, T. A., Michot, L. J., and Pinnavia, T. J. 1990. ACS Symp. Ser. 437: 120.Google Scholar
  15. 14.
    Miyata, S. 1980. Clays Clay Miner. 28: 50.CrossRefGoogle Scholar
  16. 15.
    Reichle, W. T. 1984. U.S. Patent 4,458, 026.Google Scholar
  17. 16.
    Taylor, R. M. 1984. Clay Miner. 19: 591.CrossRefGoogle Scholar
  18. 17.
    Pope, M. T. 1983. Heteropoly and Isopoly Osometalates, Spring-Verlag, New York.Google Scholar
  19. 18.
    Kown, T., Tsigdinos, G. A., and Pinnavaia, T. J. 1988. J. Am. Chem. Soc. 110: 3653.CrossRefGoogle Scholar
  20. 19.
    Kwon, T. and Pinnavaia, T. J. 1989. Chem. Mater. 1: 381.CrossRefGoogle Scholar
  21. 20.
    Drezdzon, M. A. 1988. Inorg. Chem. 27: 4628.CrossRefGoogle Scholar
  22. 21.
    Dimotakis, E. D. and Pinnavaia, T. J. 1990. Inorg. Chem. 29: 2393.CrossRefGoogle Scholar
  23. 22.
    Eugster, H. P. 1967. Science, 157: 1177.CrossRefGoogle Scholar
  24. 23.
    Hercher, R. A. and Bibby, D. M. 1987. Clays Clay Miner. 35: 318.CrossRefGoogle Scholar
  25. 24.
    Beneke, K. and Lagaly, G. 1983. Am. Miner. 68: 818.Google Scholar
  26. 25.
    Beneke, K. and Lagaly, G. 1977. Am. Miner. 62: 763.Google Scholar
  27. 26.
    Dailey, J. S. and Pinnavaia, T. J. In press. J. Inclusion Phenomena.Google Scholar
  28. 27.
    Lagaly, G., Beneke, K., and Weiss, A. 1975. Am. Miner. 60: 650.Google Scholar
  29. 28.
    Yanagisawa, T., Kuroda, K., and Kato, C. 1988. Reactivity of Solids, 5: 167.CrossRefGoogle Scholar
  30. 29.
    Ruiz-Hitzky, E., Rojo, J.M., and Lagaly, G. 1985. Colloid and Polymer Sci. 263: 1025.CrossRefGoogle Scholar
  31. 30.
    Sprung, R., Davis, M. E., Kauffman, J. S., and Dybowski, C. 1990. Ind. Eng. Chem. Res. 29: 213.Google Scholar
  32. 31.
    Landis, M. E. Afdembrink, B. A., Chu, P., Johnson, I. D., Kirker, G. W., and Rubin, M. K. 1991. J. Amer. Chem. Soc. 113: 3189.Google Scholar
  33. 32.
    Dailey, J. S. and Pinnavaia, T. J. Submitted. Chem. Mater.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Thomas J. Pinnavaia
    • 1
  1. 1.Department of Chemistry and Center for Fundamental Materials ResearchMichigan State UniversityEast LansingUSA

Personalised recommendations