The (p,n) Reaction at Intermediate Energy

  • Charles D. Goodman


If the effective interaction for the (p, n) reaction were the free N-N force, and the free N-N force were the one pion exchange force, then the 12C(p,n)12N spectrum at 0º would look just like what is actually seen in a recent 120 MeV experiment (see fig. 1). Inverting the statement to claim that fig. 1 shows that the effective force is that of the one pion exchange potential would be overstating the case. It is, however, fair to say that new data in the 100–200 MeV energy range suggest an OPEP-like interaction with its characteristic spin-isospin operator, while at lower energy (p,n) spectra look qualitatively different with the spin independent IAS transition dominating the spectrum.


Differential Cross Section Reaction Cross Section Beta Decay Intermediate Energy Pion Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. D. Goodman, C. C. Foster, M. B. Greenfield, C. A. Goulding, D. A. Lind and J. Rapaport, IEEE Trans. Nucl. Sci. NS-26, 2248 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    C. D. Goodman, J. Rapaport, D. E. Bainum and C. E. Brient, Nucl. Instrum. Methods 151, 125 (1978). C. D. Goodman, J. Rapaport, D. E. Bainum, M. B. Greenfield and C. A. Goulding, IEEE Trans. Nucl. Sci. NS-25, 577 (1978).ADSGoogle Scholar
  3. 3.
    J. D. Anderson, C. Wong and J. W. McClure, Phys. Rev. 126, 2170 (1962).ADSCrossRefGoogle Scholar
  4. 4.
    A. M. Lane, Phys. Rev. Lett. 8, 171 (1962).CrossRefGoogle Scholar
  5. 5.
    See for examples: J. D. Carlson, C. D. Zafiratos and D. A. Lind, Nucl. Phys. A249, 29 (1975), and R. R. Doering, D. M. Patterson and A. Galonsky, Phys. Rev. C 12, 378 (1975).Google Scholar
  6. 6.
    S. D. Bloom, J. D. Anderson, W. F. Hornyak and C. Wong, Phys. Rev. Lett. 15, 264 (1965) and J. D. Anderson, C. Wong and V. A. Madsen, Phys. Rev. Lett. 24, 1074 (1970).Google Scholar
  7. 7.
    R. R. Doering, L. E. Young, R. K. Bhowmik, S. M. Austin, S. D. Schery and R. DeVito, Michigan State University Cyclotron Laboratory Annual Progress Report, Sept. 1976.Google Scholar
  8. 8.
    P. J. Moffa and G. E. Walker, Nucl. Phys. A222, 140 (1974).CrossRefGoogle Scholar
  9. 9.
    G. R. Satchler, Nucl. Phys. A100, 497 (19675-Google Scholar
  10. 10.
    T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966).CrossRefGoogle Scholar
  11. 11.
    G. Bertsch, J. Borysowicz, H. McManus and W. G. Love, Nucl. Phys. A284, 399 (1977).CrossRefGoogle Scholar
  12. 12.
    W. G. Love, proceedings this conference.Google Scholar
  13. 13.
    F. Petrovich, proceedings this conference.Google Scholar
  14. 14.
    Indiana University Cyclotron Facility Progress Report Feb. 1977-Jan. 1978, pp. 91-93.Google Scholar
  15. 15.
    W. G. Love, A. Scott, F. T. Baker, W. P. Jones and J. D. Wiggins, Jr., Phys. Lett. 73B, 277 (1978). See also W. C. Love and G. R. Satchler, Nucl. Phys. A159, 1 (1970).Google Scholar
  16. 16.
    A. Picklesimer and G. E. Walker, Phys. Rev. C 17, 237 (1978).ADSCrossRefGoogle Scholar
  17. 17.
    Peter Signell, Advances in Nuclear Physics II, 223 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    F. Petrovich, proceedings this conference.Google Scholar
  19. 19.
    W. C. Barber, F. Berthold, G. Fricke and F. E. Gudden, Phys. Rev. 120, 2081 (1960).ADSCrossRefGoogle Scholar
  20. 20.
    G. Morpurgo, Phys. Rev. 110, 721 (1958).ADSCrossRefGoogle Scholar
  21. 21.
    D. Kurath, Phys. Rev. 130, 1525 (1963).ADSCrossRefGoogle Scholar
  22. 22.
    R. K. Adair, Phys. Rev. 87, 1041 (1952).ADSMATHCrossRefGoogle Scholar
  23. 23.
    C. C. Foster, proceedings this conference.Google Scholar
  24. 24.
    We thank A. Picklesimer and G. E. Walker for providing us with these calculations.Google Scholar
  25. 25.
    We thank F. Petrovich for providing us with these calculations.Google Scholar
  26. 26.
    B. H. Wildenthal and W. Chung, s-d shell wave functions communicated to F. Petrovich prior to publication.Google Scholar
  27. 27.
    R. W. Kavanagh, Nucl. Phys. Al29, 172 (1969).Google Scholar
  28. 28.
    P. M. Endt and C. van der Leun, Nucl. Phys. A310, 1 (1978).CrossRefGoogle Scholar
  29. 29.
    F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. A227, 1 (1974).CrossRefGoogle Scholar
  30. 30.
    We thank J. B. McCrory for calculating these GT matrix elements with the Oak Ridge shell model code.Google Scholar
  31. 31.
    R. Byrd, Ph.D. Thesis, Duke University, Dept. of Physics, 1978.Google Scholar
  32. 32.
    R. D. Bentley, Ph.D. Thesis, University of Colorado, Dept. of Physics and Astrophysics, 1972.Google Scholar
  33. 33.
    R. K. Jolly, T. M. Amos, A. Galonsky, R. Hinrichs and R. St.Onge, Phys. Rev. C 7, 1903 (1973).Google Scholar
  34. 34.
    R. R. Doering, A. Galonsky, D. M. Patterson and G. F. Bertsch, Phys. Rev. Lett. 35, 1691 (1975).ADSCrossRefGoogle Scholar
  35. 35.
    G. L. Moake, P. T. Debevec, L. J. Gutay, P. A. Quin and R. P. Scharenburg, Indiana University Cyclotron Facility Technical and Scientific Report 1977 to 1978, p. 114.Google Scholar
  36. 36.
    R. Madey, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Charles D. Goodman
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations