Advertisement

Energy Dependence of Vτ in the (p,n) Reaction 10–30 MeV

  • C. H. Poppe

Abstract

The (p,n) reaction on spin-zero nuclei leading to the target isobaric analog state is the most promising way to extract the VST = VO1 = Vτ part of the effective nucleon-nucleon interaction.1, 2 In order to do this a microscopic calculation is required. However many authors3–9 have analyzed this reaction in terms of the macroscopic Lane model10 in order to determine V1, the isovector part of the optical model potential. Madsen11 has shown that in the absence of exchange forces, Vτ and V1 are related by the expression
$$ {V_1}(r) = \frac{{{U_1}(r)\vec T\bullet \vec t}}{A} = {V_\tau }\sum\limits_j {\left\langle {{N_j} - {Z_j}} \right\rangle } R_j^2(r)/2\pi \sqrt {N - Z} $$
(1)
where Rj is the radial wave function for the bound particle and <Nj> and <Zj> are the expectation values of neutron and proton numbers in the j-shell. In principle, then, one may determine Vτ from such a macroscopic calculation.

Keywords

Energy Dependence Radial Wave Function Optical Model Potential Nuclear Wave Function Isobaric Analog State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Austin, The Two-Body Force in Nuclei, edited by S. M. Austin and G. M. Crawley ( Plenum Press, New York-London, 1972 ) p. 285.Google Scholar
  2. 2.
    V. A. Madsen, Nuclear Spectroscopy and Reactions, Part D ( Academic Press, New York-London, 1975 ), p. 251.Google Scholar
  3. 3.
    J. D. Carlson, C. D. Zafiratos and D. A. Lind, Nucl. Phys. A249, 29, (1975).CrossRefGoogle Scholar
  4. 4.
    S. D. Schery, D. A. Lind, H. W. Fielding, and C. D. Zafiratos, Nucl. Phys. A234, 109 (1974).CrossRefGoogle Scholar
  5. 5.
    R. K. Jolly, T. M. Amos, A. Galonsky, R. Hinrichs, and R. St.Onge, Phys. Rev. C 7, 1903 (1973)ADSCrossRefGoogle Scholar
  6. 6.
    C. Wong, J. D. Anderson, J. W. McClure, B. A. Pohl, and J. J. Wesolowski, Phys. Rev. C 5, 158 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    S. M. Grimes, C. H. Poppe, J. D. Anderson, J. C. Davis, W. H. Dunlop, and C. Wong, Phys. Rev. C 11, 158 (1975).ADSCrossRefGoogle Scholar
  8. 8.
    C. Wong, J. D. Anderson, J. C. Davis, and S. M. Grimes, Phys. Rev. C 7, 1895 (1973).ADSCrossRefGoogle Scholar
  9. 9.
    D. M. Patterson, R. R. Doering, and A. Galonsky, Nucl. Phys. A263, 261 (1976).CrossRefGoogle Scholar
  10. 10.
    A. M. Lane, Phys. Rev. Lett. 8, 171 (1962);ADSCrossRefGoogle Scholar
  11. A. M. Lane, Nucl. Phys. 35, 676 (1962).CrossRefGoogle Scholar
  12. 11.
    V. A. Madsen, Nuclear Isospin, edited by J. D. Anderson, S. D. Bloom, J. Cerny, and W. W. True ( Academic Press, New York-London, 1969 ), p. 149.Google Scholar
  13. 12.
    P. S. Miller and G. T. Garvey, Nucl. Phys. A163, 65 (1971).CrossRefGoogle Scholar
  14. 13.
    G. W. Hoffmann, W. H. Dunlop, G. J. Igo, J. G. Kulleck, J. W. Sunier, and C. A. Whitten, Jr., Nucl. Phys. A187, 577 (1972).ADSGoogle Scholar
  15. 14.
    G. W. Hoffmann, W. H. Dunlop, G. J. Igo, J. G. Kulleck, C. A. Whitten, Jr., and W. R. Coker, Phys. Lett. 40B, 453 (1972).Google Scholar
  16. 15.
    C. H. Poppe, S. M. Grimes, J. D. Anderson, J. C. Davis, W. H. Dunlop, and C. Wong, Phys. Rev. Lett. 33, 856 (1974).ADSCrossRefGoogle Scholar
  17. 16.
    D. H. Fitzgerald, G. W. Greenlees, J. S. Lilley, C. H. Poppe, S. M. Grimes, and C. Wong, Phys. Rev. C 16, 2181 (1977).ADSCrossRefGoogle Scholar
  18. 17.
    V. A. Madsen, V. R. Brown, S. M. Grimes, C. H. Poppe, J. D. Anderson, J. C. Davis, and C. Wong, Phys. Rev. C 13, 548 (1976).ADSCrossRefGoogle Scholar
  19. 18.
    D. H. Fitzgerald, J. S. Lilley, C. H. Poppe, and S. M. Grimes, Phys. Rev. C 18, 1207 (1978).ADSCrossRefGoogle Scholar
  20. 19.
    C. H. Poppe, Bull. Am. Phys. Soc. 21, 560 (1976).Google Scholar
  21. 20.
    C. H. Poppe, paper presented at “The (p,n) Reaction and Its Connection to the Nucleon-Nuclear Optical Model,” Workshop held at Lawrence Livermore Laboratory, Oct. 1978, unpublished.Google Scholar
  22. 21.
    R. Schaeffer and J. Raynal, unpublished.Google Scholar
  23. 22.
    G. Bertsch, J. Borysowicz, H. McManus, and W. G. Love, Nucl. Phys. A284, 399 (1977).CrossRefGoogle Scholar
  24. 23.
    C. Wong, J. D. Anderson, J. McClure, B. Pohl, V. A. Madsen, and F. Schmittroth, Phys. Rev. 160, 769 (1967);ADSCrossRefGoogle Scholar
  25. V. A. Madsen, private communication.Google Scholar
  26. 24.
    F. D. Becchetti, Jr. and G. W. Greenlees, Phys. Rev. 182, 1190 (1969).CrossRefGoogle Scholar
  27. 25.
    Ch. Lagrange, paper presented at the “Specialist Meeting on Neutron Data of Structural Materials for Fast Reactors,” Geel, Belgium, Dec. 1977, unpublished.Google Scholar
  28. 26.
    L. Rikus, R. Smith, I. Morrison, and K. Amos, Nucl. Phys. A286, 494 (1977).CrossRefGoogle Scholar
  29. 27.
    S. Fukuda and Y. Torizuka, Phys. Rev. Lett. 29, 1109 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • C. H. Poppe
    • 1
  1. 1.Lawrence Livermore LaboratoryLivermoreUSA

Personalised recommendations