The Sequential Transfer Mechanisms in (p,n) Reactions

  • P. D. Kunz


The first order distorted wave Born approximation (DWBA) has provided a good description for many nuclear reactions. In the study of charge exchange reactions such as (3He,t) and (p,n) one would initially expect to understand these processes in terms of an effective two-body charge exchange potential which acts between the incident projectile and the target nucleons. For the low spin transitions, especially the analogue state transitions, one could approximately explain1,2 the data in terms of effective nucleon-nucleon force strengths. These successes were tempered by the failure of the theory to account for the excitation strength3–5 of the higher spin states such as the 6+ and 8+ states. (The strength of the effective interaction was found to be about an order of magnitude larger for the 6+ state than for the 0+ analogue state.) These results were for cases where simple shell model configurations such as (π f7/2) (v f7/2)−1 and (π g9/2) (v g9/2)‒1 could be used. Schaeffer6 has shown that exchange effects cannot remove the high spin renormalization difficulty although the corrections were significant and in the right direction.


Finite Range Sequential Transfer Distorted Wave Born Approximation Charge Exchange Reaction Analogue State Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. J. Wesolowski, E. H. Schwarcz, P. G. Roos, and C. A. Ludemann, Phys. Rev. 169, 878 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    P. D. Kunz, E. Rost, R. R. Johnson, G. D. Jones, and S. I. Hayakawa, Phys. Rev. 185, 1528 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    S. I. Hayakawa, W. L. Fadner, J. J. Kraushaar, and E. Rost, Nucl. Phys. A139, 465 (1969).CrossRefGoogle Scholar
  4. 4.
    A. Richter, J. R. Comfort, N. Anantaraman, and J. P. Schiffer, Phys. Rev. C 5, 821 (1972).ADSCrossRefGoogle Scholar
  5. 5.
    P. Kossanyi-Demay, P. Roussel, H. Faraggi, and R. Schaeffer, Nucl. Phys. A148, 181 (1970).CrossRefGoogle Scholar
  6. 6.
    R. Schaeffer, Nucl. Phys. 158, 321 (1970).CrossRefGoogle Scholar
  7. 7.
    R. Schaeffer and G. Bertsch, Phys. Lett. 38B, 159 (1972).CrossRefGoogle Scholar
  8. 8.
    M. Toyama, Phys. Lett. 38B, 147 (1972);Google Scholar
  9. M. Toyama, Nucl. Phys. A211, 254 (1973).Google Scholar
  10. 9.
    W. R. Coker, T. Udagawa, and H. H. Wolter, Phys. Rev. C 7, 1154 (1973).ADSCrossRefGoogle Scholar
  11. 10.
    L. D. Rickertsen and P. D. Kunz, Phys. Lett. 47B, 11 (1973).ADSGoogle Scholar
  12. 11.
    W. R. Coker, T. Udagawa, and J. R. Comfort, Phys. Rev. C 10, 1130 (1976).ADSCrossRefGoogle Scholar
  13. 12.
    N. B. de Takacsy, Nucl. Phys. A231, 243 (1974).ADSGoogle Scholar
  14. 13.
    F. Iachello and P. P. Singh, Phys. Lett. 48B, 81 (1974).ADSGoogle Scholar
  15. 14.
    P. D. Kunz and E. Rost, Phys. Lett. 47B, 136 (1973).ADSGoogle Scholar
  16. 15.
    L. A. Charlton, Phys. Rev. Lett. 35, 1495 (1975)ADSCrossRefGoogle Scholar
  17. L. A. Charlton, Phys. Rev. C 14, 506 (1976).ADSGoogle Scholar
  18. 16.
    P. D. Kunz and L. A. Charlton, Phys. Lett. 61B, 1 (1976).ADSGoogle Scholar
  19. 17.
    L. A. Charlton and P. D. Kunz, Phys. Lett. 72B, 7 (1977).ADSGoogle Scholar
  20. 18.
    M. Igarishi, Phys. Lett. 78B, 379 (1978).ADSGoogle Scholar
  21. 19.
    J. D. Burch, M. J. Schneider, and J. J. Kraushaar, Nucl. Phys. A299, 117 (1978).ADSGoogle Scholar
  22. 20.
    W. R. Zimmerman, J. J. Kraushaar, and F. E. Cecil, Nucl. Phys. A309, 34 (1978).ADSGoogle Scholar
  23. 21.
    T. Udagawa, H. H. Wolter, and W. R. Coker, Phys. Rev. Lett. 31, 1507 (1973).ADSCrossRefGoogle Scholar
  24. 22.
    Y. Hahn, D. J. Kouri, and F. S. Levin, Phys. Rev. C 10, 1615 (1974).ADSCrossRefGoogle Scholar
  25. 23.
    R. V. Reid, Ann. Phys. 50, 411 (1968).ADSCrossRefGoogle Scholar
  26. 24.
    B. L. Scott and S. A. Moskowski, Ann. Phys. 14, 107 (1961)ADSCrossRefGoogle Scholar
  27. B. L. Scott and S. A. Moskowski, Ann. Phys. 11, 65 (1960).ADSMATHCrossRefGoogle Scholar
  28. 25.
    F. A. Brieva and J. R. Rook, Nucl. Phys. A291, 299 (1976);ADSGoogle Scholar
  29. F. A. Brieva and J. R. Rook, Nucl. Phys. A291, 317 (1976).ADSGoogle Scholar
  30. 26.
    H. von Geramb and J. R. RookGoogle Scholar
  31. 27.
    G. Baur, V. A. Madsen, and F. Osterfeld, Phys. Rev. C. 17, 819 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • P. D. Kunz
    • 1
  1. 1.Nuclear Physics LaboratoryUniversity of ColoradoBoulderUSA

Personalised recommendations