Advertisement

A Folding Model Analysis of the (p,n) Quasielastic Reaction

  • S. D. Schery

Abstract

Since the discovery in 1961 of the prominence of the isobaric analogue of the target ground state in (p,n) spectral, theoretical study of this reaction, often called the (p,n) quasielastic reaction, has evolved along several lines. One approach, sometimes called the microscopic model,2,3,4 represents the target and residual nuclei by shell model wave functions. A nucleon-nucleon interaction is assumed and the reaction is described in terms of a sum of two-body forces between the projectile and target nucleons. This fundamental approach can include such refinements as multistep processes5,6 and the effect of antisymmetrization of the projectile and target nucleons.7 An alternate approach describes the quasielastic reaction by means of a nucleon-nucleus optical potential that possesses an isospin dependence. This approach originated with A. M. Lane8,9 and the term macroscopic model is used when a phenomenological isospin dependent optical potential is used to describe the quasielastic reaction.10,11,12 These two models are not necessarily inconsistent and both have met with success in predicting quasielastic data.

Keywords

Optical Potential Neutron Density Folding Model Distorted Wave Born Approximation Integrate Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Anderson and C. Wong, Phys. Rev. Lett. 7, 250 (1961).ADSCrossRefGoogle Scholar
  2. 2.
    G. R. Satchler, Nucl. Phys. A95, 1 (1967).CrossRefGoogle Scholar
  3. 3.
    V. A. Madsen, Nucl. Phys. 80, 177 (1966).CrossRefGoogle Scholar
  4. 4.
    N. Austern, Direct Nuclear Reaction Theories ( Wiley-Interscience, New York, 1970 ) p. 148.Google Scholar
  5. 5.
    L. D. Rickertsen and P. D. Kunz, Phys. Lett. 47B, 11 (1973).Google Scholar
  6. 6.
    V. A. Madsen, V. R. Brown, S. M. Grimes, C. H. Poppe, J. D. Anderson, J. C. Davis, and C. Wong, Phys. Rev. C 13, 548 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    R. R. Doering, D. M. Patterson, and A. Galonsky, Phys. Rev. C 12, 378 (1975).ADSCrossRefGoogle Scholar
  8. 8.
    A. M. Lane, Phys. Rev. Lett. 8, 171 (1962).ADSCrossRefGoogle Scholar
  9. 9.
    A. M. Lane, Nucl. Phys. 35, 676 (1962).CrossRefGoogle Scholar
  10. 10.
    G. R. Satchler, R. M. Drisko, and R. H. Bassel, Phys. Rev. 136, 637 (1964).ADSCrossRefGoogle Scholar
  11. 11.
    G. R. Satchler, Isospin in Nuclear Physics ( North-Holland, Amsterdam, 1969 ) p. 389.Google Scholar
  12. 12.
    C. S. Batty, B. E. Bonner, E. Friedman, C. Tschalär, L. E. Williams, A. S. Clough, and J. B. Hunt, Nucl. Phys. A116, 643 (1968).CrossRefGoogle Scholar
  13. 13.
    G. W. Greenlees, G. J. Pyle, and Y. C. Tang, Phys. Rev. 171, 1115 (1968)ADSCrossRefGoogle Scholar
  14. 14.
    B. Sinha, Phys. Reports 20, 1 (1975).ADSCrossRefGoogle Scholar
  15. 15.
    V. A. Madsen, Nuclear Isospin ( Academic Press, New York, 1969 ), p. 149.Google Scholar
  16. 16.
    C. J. Batty, E. Friedman, and G. W. Greenlees, Nucl. Phys. Al27, 368 (1969).ADSGoogle Scholar
  17. 17.
    G. R. Satchler, Phys. Lett 44B, 13 (1973).ADSGoogle Scholar
  18. 18.
    W. H. Bassichis and M. R. Strayer, Phys. Rev.C 18, 632 (1978).ADSCrossRefGoogle Scholar
  19. 19.
    W. G. Love and L. W. Owen, Nucl. Phys. A239, 74 (1975).ADSGoogle Scholar
  20. 20.
    B. Z. Georgiev and R. S. Mackintosh, Phys. Lett. 73B, 250 (1978).ADSGoogle Scholar
  21. 21.
    E. Friedman, Phys. Rev.C 10, 2089 (1974).ADSCrossRefGoogle Scholar
  22. 22.
    A. M. Green, Phys. Lett. 24B, 384 (1967).Google Scholar
  23. 23.
    E. Friedman, Phys. Lett. 29B, 213 (1969).Google Scholar
  24. 24.
    S. D. Schery, S. M. Austin, A. Galonsky, L. E. Young, and U. E. P. Berg, Phys. Lett. 79B, 30 (1978).Google Scholar
  25. 25.
    E. Gadioli, E. Gadioli Erba, and G. Tagliaferri, Phys. Rev. C17, 1294 (1978).ADSGoogle Scholar
  26. 26.
    W. G. Love, Phys. Rev.C 15, 1261 (1977).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    G. L. Thomas, B. C. Sinha, and F. Duggan, Nucl. Phys. A203, 305 (1973).CrossRefGoogle Scholar
  28. 28.
    J. C. Slater, Phys. Rev. 81, 385 (1951).ADSMATHCrossRefGoogle Scholar
  29. 29.
    V. R. Pandharipande, Nucl. Phys. A166, 317 (1971).CrossRefGoogle Scholar
  30. 30.
    H. Uberall, Electron Scattering from Complex Nuclei ( Academic Press, New York, 1971 ).Google Scholar
  31. 31.
    C. W. de Jager, H. de Vries, and C. de Vries, At. Data Nucl. Data Tables 14, 479 (1974).ADSCrossRefGoogle Scholar
  32. 32.
    I. Angeli and M. Csatlos, ATOMKI Közlemenyek 20, 1 (1978).Google Scholar
  33. 33.
    J. D. Carlson, C. D. Zafiratos, and D. A. Lind, Nucl. Phys. A249 , 29 (1975).ADSGoogle Scholar
  34. 34.
    S. D. Schery, D. A. Lind, H. W. Fielding, and C. D. Zafiratos, Nucl. Phys. A234, 109 (1974).CrossRefGoogle Scholar
  35. 35.
    S. D. Schery, D. A. Lind, and H. Wieman, Phys. Rev.C 14, 1800 (1976).ADSCrossRefGoogle Scholar
  36. 36.
    S. D. Schery, D. A. Lind, and C. D. Zafiratos, Phys. Rev. C 9, 416 (1974).ADSCrossRefGoogle Scholar
  37. 37.
    F. D. Becchetti, Jr. and G. W. Greenlees, Phys. Rev. 182, 1190 (1969).ADSCrossRefGoogle Scholar
  38. 38.
    D. Wilmore and P. E. Hodgson, Nucl. Phys. 55, 673 (1964).CrossRefGoogle Scholar
  39. 39.
    C. M. Perey and F. G. Perey, At. Data Nucl. Data Tables 13, 293 (1974).ADSCrossRefGoogle Scholar
  40. 40.
    C. M. Perey and F. G. Perey, At. Data Nucl. Data Tables 17, 1 (1976).ADSCrossRefGoogle Scholar
  41. 41.
    D. M. Patterson, R. R. Doering, and A. Galonsky, Nucl. Phys. A263, 261 (1976).CrossRefGoogle Scholar
  42. 42.
    P. D. Kunz, University of Colorado, unpublished.Google Scholar
  43. 43.
    G. W. Greenlees, W. Makofske, and G. J. Pyle, Phys. Rev. C 1, 1145 (1970).ADSCrossRefGoogle Scholar
  44. 44.
    J. J. H. Menet, E. E. Gross, J. J. Malinify, and A. Zucker, Phys. Rev. C 4, 1114 (1971).ADSCrossRefGoogle Scholar
  45. 45.
    A. G. Hardacre, J. F. Turner, J. C. Kerr, G. A. Gard, P. E. Cavanagh, and C. F. Coleman, Nucl. Phys. A173, 436 (1971).CrossRefGoogle Scholar
  46. 46.
    S. Kailas and S. K. Gupta, Phys. Lett. 71B, 271 (1977).Google Scholar
  47. 47.
    J.-P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 15, 10 (1977).ADSCrossRefGoogle Scholar
  48. 48.
    J.-P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 16, 80 (1977).ADSCrossRefGoogle Scholar
  49. 49.
    L. Ray, W. Coker, G. W. Hoffman, Phys. Rev. C 18, 2641 (1978).ADSCrossRefGoogle Scholar
  50. 50.
    L. Ray, Los Alamos Report LA-UR-79–93, 1979.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • S. D. Schery
    • 1
  1. 1.Moody CollegeTexas A&M University SystemGalvestonUSA

Personalised recommendations