Advertisement

Experimental Test of One-Pion Exchange and PCAC in Proton-Nucleus Charge Exchange Reactions at 144 MeV

  • G. L. Moake
  • L. J. Gutay
  • R. P. Scharenberg
  • P. T. Debevec
  • P. A. Quin

Abstract

The inelastic excitation of nuclei by intermediate energy nucleons is a topic of long standing experimental and theoretical interest. At intermediate energy it has been argued, the inelastic scattering amplitudes should bear some more or less transparent relation to the free nucleon-nucleon scattering amplitudes. Although this relation would be difficult to apply to an arbitrary complex final state, at the very least the relation should be evident in a judiciously chosen set of discrete final states. Not only has the latest generation of accelerators and experimental techniques fostered a renewed interest in this problem, but the nucleon-nucleon amplitudes themselves are now rather well determined.

Keywords

Differential Cross Section Beta Decay Vertex Function Final State Interaction Pion Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ashmore, W. H. Range, R. T. Taylor, B. M. Townes, L. Castillejo and R. F. Peierls, Nucl. Phys. 36, 258 (1962).CrossRefGoogle Scholar
  2. 2.
    C. W. Kim and H. Primakoff, Phys. Rev. 139B, 1447 (1965).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    0. N. Jarvis, C. Whitehead, and M. Shah, Nucl. Phys. A 184, 615 (1974).Google Scholar
  4. 4.
    K. Gottfried and J. D. Jackson, N. Cim. 34, 5783 (1964) L. Durand and Y. T. Chiu, Phys. Rev. 139, 646 (1965).Google Scholar
  5. 5.
    H. Hogaasen and J. Hogaasen, N. Cim. 39, 941 (1965).ADSCrossRefGoogle Scholar
  6. 6.
    G. Fox, CALT-68-335.Google Scholar
  7. 7.
    K. Enkelenz, Phys. Rep. C 13, 191 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    M. Goldberger and S. B. Trieman, Phys. Rev. 110, 1178 (1958).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    M. Gell-Mann and M. Levy, N. Cim 16, 705 (1960).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    C. W. Kim, Rev. d. N. Cim. 4, 189 (1974).CrossRefGoogle Scholar
  11. 11.
    C. W. Kim and J. S. Townsend, Phys. Rev. D11, 656 (1975).ADSGoogle Scholar
  12. 12.
    Our equation is obtained by combining the nuclear PCAC relation, Ref. 11, Eq. 6, with the impulse approximation for the pseudo-scalar form factor, Ref. 10, Eq. 56, and Ref. lib, Eq. 16, with the q2 dependence of the axial vector matrix element, Ref. 10, Eq. 59 and 60.Google Scholar
  13. 13.
    Ref. 10, Eq. 8. The numerical constants have been chosen such that gpπn(-M2π) = 1.43 and gprn(0) = 1. 32.Google Scholar
  14. 14.
    B. Goulard, B. Lararo, H. Primakoff, and J. D. Vergados, Phys. Rev. C16, 1999 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • G. L. Moake
    • 1
    • 2
    • 3
  • L. J. Gutay
    • 1
    • 2
    • 3
  • R. P. Scharenberg
    • 1
    • 2
    • 3
  • P. T. Debevec
    • 1
    • 2
    • 3
  • P. A. Quin
    • 1
    • 2
    • 3
  1. 1.Department of PhysicsPurdue UniversityWest LafeyetteUSA
  2. 2.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of PhysicsUniversity of WisconsinMadisonUSA

Personalised recommendations