The Enamel of Neogene Hominoids

Structural and Phyletic Implications
  • D. G. Gantt
Part of the Advances in Primatology book series (AIPR)


The present view of primate evolution is based almost completely on dental remains. This nearly total reliance on teeth by paleoanthropologists in their attempts to reconstruct phylogenies and to interpret functional parameters makes it imperative that every piece of information be evaluated. Teeth are the most abundant fossil remains because they are the hardest and most highly calcified elements of the mammalian skeleton. Thus, they are best suited to survive the processes of death, scavenging, and burial. They are also least susceptible to the processes of fossilization. The teeth are an unique organ, constructed of three calcified tissues: enamel, dentin, and cementum.


Human Enamel Enamel Thickness Enamel Structure Enamel Prism Miocene Hominoid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, P. 1978. Taxonomy and relationships of fossil apes, in: Recent Advances in Primatology, Volume 3, Evolution (D. J. Chivers and K. A. Joysey, eds.), pp. 43–56, Academic, London.Google Scholar
  2. Andrews, P., and Tekkaya, I. 1980. A revision of the Turkish Miocene hominoid Sivapithecus meteai. Palaeontology 23: 85–95.Google Scholar
  3. Boyde, A. 1964. The Structure and Development of Mammalian Enamel, Ph.D. Dissertation, University of London.Google Scholar
  4. Boyde, A. 1965a. The structure of developing mammalian dental enamel, in: Tooth Enamel ( R. W. Fearnhead and M. V. Stack, eds.), pp. 163–167, Wright, Bristol.Google Scholar
  5. Boyde, A. 1965b. The development of enamel in mammals, in: Calcified Tissues(J. J. Backwood and M. Owen, eds.), pp. 276–280, Springer-Verlag, New York.Google Scholar
  6. Boyde, A. 1967. The development of enamel structure. Proc. R. Soc. Med. 60: 13–18.Google Scholar
  7. Boyde, A. 1969a. Electron microscopic observation relating to the nature and development of prism decussation in mammalian dental enamel. Bull. Group Int. Rech. Sc. Stomat. 12: 151–207.Google Scholar
  8. Boyde, A. 1969b. Correlation of ameloblast size with enamel prism pattern: Use of scanning electron microscope to make surface area measurements. Z. Zellforsch. 93: 583–593.PubMedCrossRefGoogle Scholar
  9. Boyde, A. 1970. The contribution of the scanning electron microscope to dental histology. Apex 4: 15–21.PubMedGoogle Scholar
  10. Boyde, A. 1971. Comparative histology of mammalian teeth, in: Dental Morphology and Evolution ( A. A. Dalberg, ed.), pp. 81–93, University of Chicago Press, Chicago.Google Scholar
  11. Boyde, A. 1975. Some aspects of the photogrammetry of SEM images. Photogrammetric Record 8: 408–445.CrossRefGoogle Scholar
  12. Boyde, A. 1976a. Enamel structure and cavity margins. Operative Dentistry 1: 13–28.Google Scholar
  13. Boyde, A. 1976b. Amelogenesis and the structure of enamel, in: Scientific Foundations of Dentistry ( B. Cohen and I. R. H. Kramer, eds.), pp. 335–352, Heineman Medical Books, London.Google Scholar
  14. Boyde, A. 1978. Development of the structure of the enamel of the incisor teeth in the three classical subordinai groups of the Rodentia, in: Development Function and Evolution of Teeth ( P. M. Butler and K. A. Joysey, eds.), pp. 43–58, Academic, London.Google Scholar
  15. Boyde, A., and Jones, S. J. 1972. Scanning electron microscopic studies of the formation of mineralized tissue, in: Developmental Aspects of Oral Biology ( S. Slavkin and R. Bavetta, eds.), pp. 243–274, Academic, New York.Google Scholar
  16. Boyde, A., Jones, S. J., and Reynolds, P. S. 1978. Quantitative and qualitative studies of enamel etching with acid and EDTA. Scanning Electron Microscop. 1978 (II): 991–1002.Google Scholar
  17. Butler, P. 1972. Some functional aspects of molar evolution. Evolution 26: 474–483.CrossRefGoogle Scholar
  18. Butler, P. 1973. Molar wear facets of early tertiary North American primates, in: Craniofacial Biology of Primates ( M. R. Zingeser, ed.), pp. 474–483, Karger, Basel.Google Scholar
  19. Carter, J. T. 1922. The structure of the enamel in the primates and some other mammals. Proc. R. Zool. Soc. Lond. 1922: 599–608.Google Scholar
  20. Crompton, A. Q. and Hiiemae, K. 1969. Functional occlusion in tribosphenic molars, Nature (Lond.) 222: 678–679.CrossRefGoogle Scholar
  21. De Bonis, L., and Melentis, M. 1976. Les Dryopithécinés de Macédoine (Grèce): Leur place dans l’évolution des Primates hominoides du Miocène, in: Les Plus Anciens Hominides ( P. V. Tobias and Y. Coppens, eds.), pp. 28–38, Colloque VI, IX Union Internationale des Sciences Pre-historiques, Nice. CNRS, Paris.Google Scholar
  22. Frank, R. M., and Nalbandian, J. 1967. Ultrastructure of amelogenesis, in: Structure and Chemical Organization of Teeth ( A. E. Miles, ed.), Volume 1, pp. 399–466, Academic, London.Google Scholar
  23. Gantt, D. G. 1976. Enamel thickness: Its functional and possible phyletic implication. Am. J. Phys. Anthropol. 44: 179–180.Google Scholar
  24. Gantt, D. G. 1977. Enamel of Primate Teeth: Its Thickness and Structure with Reference to Functional and Phyletic Implications. Ph.D. Dissertation, Washington University, St. Louis.Google Scholar
  25. Gantt, D. G. 1979a. Comparative enamel histology of primate teeth, in: Proceedings of the Third International Symposium on Tooth Enamel, J. Dent. Res. 58 (Special Issue B): 1002–1003.PubMedCrossRefGoogle Scholar
  26. Gantt, D. G. 1979b. Taxonomic implications of primate dental tissues. J. Biol. Buccale 7: 149–156.PubMedGoogle Scholar
  27. Gantt, D. G. 1979c. A method of interpreting enamel prism patterns. Scanning Electron Microscop. 1979 (II): 491–496.Google Scholar
  28. Gantt, D. G. 1979d. Patterns of dental wear and the role of the canine in Cercopithecinae. Am. J. Phys. Anthropol. 51: 353–360.PubMedCrossRefGoogle Scholar
  29. Gantt, D. G. 1980. Implications of enamel prism patterns for the origin of New World Monkeys, in: Evolutionary Biology of the New World Monkeys and Continental Drift ( R. L. Ciochon and A. B. Chiarelli, eds.), pp. 201–217, Plenum, New York.Google Scholar
  30. Gantt, D. G. 1981a. Enamel thickness and Neogene hominoid evolution. Am. J. Phys. Anthropol. 54: 222.Google Scholar
  31. Gantt, D. G. 1981 b. Notes on the enamel prism pattern of the Garusi and Eyasi hominids, in: Die Archaeologischen und Anthropologischen Ergegnisse der Kohl-Larsen Expeditionen in Nordtanzania, 1933–1939 (R. R. R. Protsch, ed.), Volume V, The Palaeoanthropological Finds of the Pliocene and Pleistocene: Part I, Monograph Garusi; Part II, Monograph Eyasi, pp. 150–153, Archaeological Venatoria, W. Kohlhammer, Stuttgart.Google Scholar
  32. Gantt, D. G. 1981c. Neogene hominid evolution: A tooth’s inside view, in: Teeth-Form, Function and Evolution ( B. Kurtén, ed.), pp. 107–120, Columbia University Press, New York.Google Scholar
  33. Gantt, D. G., Pilbeam, D., and Steward, G. 1977. Hominoid enamel prism patterns. Science 198: 1155–1157.PubMedCrossRefGoogle Scholar
  34. Gantt, D. G., Xirotiris, N., Kurten, B., and Melentis, J. K. 1980. The Petralonia dentition-Hominid or cave bear ? J. Hum. Evol. 9: 483–487.CrossRefGoogle Scholar
  35. Gillings, B., and Buonocore, M. 1959. An apparatus for the preparation of thin serial sections of undecalcified tissues. J. Dent. Res. 38: 1156–1165.PubMedCrossRefGoogle Scholar
  36. Gillings, B., and Buonocore, M. 1961a. An investigation of enamel thickness in human lower incisor teeth, J. Dent. Res. 49: 105–118.Google Scholar
  37. Gillings, B., and Buonocore, M. 196lb. Thickness of enamel at the base of pits and fissures in human molars and bicuspids. J. Dent. Res. 40: 119–133.PubMedCrossRefGoogle Scholar
  38. Gingerich, P. 1974. Dental function in the Paleocene primate Plesiadapis, in: Prosimian Biology ( R. D. Martin, G. A. Doyle, and A. C. Walker, eds.), pp. 533–541, Duckworth, London.Google Scholar
  39. Gingerich, P., and Schoeninger, M. 1977. The fossil record and primate phylogeny. J. Hum. Evol. 6: 483–505.CrossRefGoogle Scholar
  40. Goodman, M. 1974. Biochemical evidence on hominid phylogeny, Annu. Rev. Anthropol. 3: 203–228.CrossRefGoogle Scholar
  41. Goodman, M., Tashian, R. E., and Tashian, J. H. 1976. Molecular Anthropology, Plenum, New York. 550 pp.Google Scholar
  42. Greenfield, L. O. 1979. On the adaptive pattern of “Ramapithecus”. Am. J. Phys. Anthropol. 50: 527–531.PubMedCrossRefGoogle Scholar
  43. Helmcke, J. G. 1967. Ultrastructure of enamel, in: Structural and Chemical Organization of Teeth ( A. E. W. Miles, ed.), Volume II, pp. 135–163, Academic, London.Google Scholar
  44. Hennig, W. 1966. Phylogenetic Systematics, University of Illinois Press, Urbana. 263 pp.Google Scholar
  45. Hiiemae, K. M., and Kay, R. F. 1972. Trends in the evolution of primate mastication. Nature (Lond.) 240: 486–487.Google Scholar
  46. Hiiemae, K., and Kay, R. F. 1973. Evolutionary trends in the dynamics of Primate mastication, in: Craniofacial Biology of Primates ( M. R. Zingeser, ed.), Volume 3, pp. 28–64, Karger, Basel.Google Scholar
  47. Hylander, W. L. 1977. In vivo bone strain in the mandible of Galago crassicaudatus, Am. J. Phys. Anthropol. 46: 309–326.Google Scholar
  48. Hylander, W. L. 1979. The functional significance of Primate mandibular form. J. Morphol. 160: 223–240.PubMedCrossRefGoogle Scholar
  49. Jolly, C. J. 1970. The seed-eaters: A new model of hominid differentiation based on a baboon analogy. Man 5: 5–26.CrossRefGoogle Scholar
  50. Kay, R. F. 1973. Mastication, Molar Tooth Structure, and Diet in Primates, Ph.D. Dissertation, Yale University, New Haven.Google Scholar
  51. Kay, R. F. 1974. Jaw movement and tooth use in recent fossil primates. Am. J. Phys. Anthropol. 40: 227–256.PubMedCrossRefGoogle Scholar
  52. Kay, R. F. 1975. The functional adaptations of primate molar teeth. Am. J. Phys. Anthropol. 43: 195–215.PubMedCrossRefGoogle Scholar
  53. Kay, R. F. 1977. The evolution of molar occlusion in Cercopithecidae and early catarrhines. Am. J. Phys. Anthropol. 45: 227–256.Google Scholar
  54. Kay, R. F. 1978. Molar structure and diet in extant Cercopithecidae, in: Development Function and Evolution of Teeth ( P. Butler and K. Joysey, eds.), pp. 309–339, Academic, London.Google Scholar
  55. Kay, R. F. 1981. The nut-crackers-A new theory of the adaptations of the Ramapithecinae. Am. J. Phys. Anthropol. 55: 141–151.CrossRefGoogle Scholar
  56. Kay, R. F., and Cartmill, M. 1977. Cranial morphology and adaptation of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea, Primates), with a description of a new genus and species. J. Hum. Evol. 6: 19–53.CrossRefGoogle Scholar
  57. Kay, R. F., and Hiiemae, K. M. 1974. Mastication in Galogo crassicaudatus, A cinefluorographic and occlusal study, in: Prosimian Biology ( R. D. Martin, G. A. Doyle, and A. C. Walker, eds.), pp. 501–530, Duckworth, London.Google Scholar
  58. Kay, R. F., and Hylander, W. L. 1979. The dental structure of mammalian folivores with special reference to Primates and Phalageroidea (Marsupialia), in: The Biology of Arboreal Folivores ( G. G. Montgomery, ed.), pp. 173–191, Smithsonian Institute Press, Washington, D.C.Google Scholar
  59. Kay, R. F., Fleagle, J. G., and Simons, E. L. 1981. A revision of the Oligocene apes of the Fayum Province, Egypt. Am. J. Phys. Anthropol. 55: 293–321.CrossRefGoogle Scholar
  60. Lavelle, C. L. B., Shellis, R. P., and Poole, D. F. G. 1977. Evolutionary Changes to the Primate Skull and Dentition, Chapter 5: The calcified dental tissues of primates, pp. 197–279, Thomas Springfield, Illinois.Google Scholar
  61. Luckett, W. P., and Szalay, F. S. 1978 Clades versus grades in primate phylogeny, in: Recent Advances in Primatology, Volume 3, Evolution ( D. J. Chivers and K. A. Joysey, eds.), pp. 227–237, Academic, London.Google Scholar
  62. Meckel, A. H. 1971. The keyhole concept of enamel microstructure, in: Chemical and Physiology of Enamel, pp. 25–42, University of Michigan Press, Ann Arbor, Michigan.Google Scholar
  63. Meckel, A. H., Griebstein, W. J., and Neal, R. J. 1965a. Ultrastructure of fully calcified human dental enamel, in: Tooth Enamel ( M. V. Stack and R. W. D. Fearnhead, eds.), pp. 160–162, John Wright, Bristol.Google Scholar
  64. Meckel, A. H., Griebstein, W. J., and Neal, R. J. 1965b. Structure of mature human dental enamel as observed by electron microscopy. Arch. Oral Biol. 10: 775–783.PubMedCrossRefGoogle Scholar
  65. Mills, J. R. E. 1955. Ideal dental occlusion in the Primates. Dent. Pract. 6: 47–61.Google Scholar
  66. Mills, J. R. E. 1963. Occlusion and malocclusion of the teeth of Primates, in: Dental Anthropology ( D. Brothwell, ed.), pp. 29–51, Pergamon, London.Google Scholar
  67. Mills, J. R. E. 1973. Evolution of mastication in primates, in: Craniofacial Biology of Primates ( M. R. Zingeser, ed.), pp. 23–36, Karger, Basel.Google Scholar
  68. Molnar, S. 1976. The microstructure of Primate teeth, in: Orofacial Growth and Development ( A. A. Dahlberg and T. M. Graber, eds.), pp. 57–61, Mouton, The Hague.Google Scholar
  69. Molnar, S. 1977. On the hominid masticatory complex: Biomechanical and evolutionary perspectives. J. Hum. Evol. 6: 551–568.CrossRefGoogle Scholar
  70. Molnar, S., and Gantt, D. G. 1977. Functional implications of primate enamel thickness. Am. J. Phys. Anthropol. 56: 447–454.CrossRefGoogle Scholar
  71. Molnar, S., and Ward, S. C., 1975. Mineral metabolism and micro-structural defects in primate teeth. Am. J. Phys. Anthropol. 43: 3–18.PubMedCrossRefGoogle Scholar
  72. Molnar, S., and Ward, S. C. 1977. On the hominid masticatory complex: Biomechanical and evolutionary perspectives. J. Hum. Evol. 6: 551–568.CrossRefGoogle Scholar
  73. Osborn, J. W. 1967. Three-dimensional reconstruction of enamel prisms. J. Dent. Res. 46: 1412–1419.PubMedCrossRefGoogle Scholar
  74. Osborn, J. W. 1968. An evaluation of previous assessments of prism directions in human enamel. J. Dent. Res. 47: 217–222.PubMedCrossRefGoogle Scholar
  75. Osborn, J. W. 1970. The mechanism of prism formation in teeth: A hypothesis. Calc. Tiss. Res. 5: 115–132.CrossRefGoogle Scholar
  76. Osborn, J. W. 1974. Variation in structure and development of enamel, in: Dental Enamel: Development, Structure and Caries. Oral Sci. Rev. 3: 1–84.Google Scholar
  77. Pilbeam, D. R. 1972. The Ascent of Man, pp. 49–61, Macmillan, New York.Google Scholar
  78. Pilbeam, D. R. 1978. Rearranging our family tree. Hum. Nat. 1 (6): 38–45.Google Scholar
  79. Pilbeam, D. R., Meyer, G. E., Badgley, C., Rose, M. D., Pickford, M. H. L., Behrensmeyer, A. K., and Shah, S. M. I. 1977. New hominoid primates from the Siwaliks of Pakistan and their bearing on hominid evolution. Nature (Lond.) 270: 689–695.CrossRefGoogle Scholar
  80. Poole, D. F. G. 1973. Phylogeny of tooth tissues: Enameloid and enamel in recent vertebrates, with a note on the history of cementum, in: Structural and Chemical Organization of Teeth ( A. E. W. Miles, ed.), pp. 111–149, Academic, London.Google Scholar
  81. Poole, D. F. G., and Brooks, A. W. 1961. The arrangement of crystallites in enamel prisms. Arch. Oral Biol. 5: 14–26.PubMedCrossRefGoogle Scholar
  82. Remy, J. A. 1976. Etude Comparative des Structures Dentaires Chez les Palaeotheriidae et Divers Autres Périssodactyles Fossiles, Thesis, Université Louis Pasteur, Strasbourg.Google Scholar
  83. Rensberger, J. M. 1973. An occlusal model for mastication and dental wear in herbivorous mammals. J. Paleontol. 47: 515–528.Google Scholar
  84. Rensberger, J. M. 1975. Function in the cheek tooth evolution of some hypsodont geomyoid rodents. J. Paleontol. 49: 10–22.Google Scholar
  85. Robinson, J. T. 1956. The dentition of the Australopithecinae. Transvaal Mus. Mem. 9: 1–79.Google Scholar
  86. Rosenberger, A. L., and Kinzey, W. G. 1976. Functional patterns of molar occlusion in platyrrhine primates. Am. J. Phys. Anthropol. 45: 281–298.PubMedCrossRefGoogle Scholar
  87. Sarich, V. M., and Cronin, J. E. 1976. Molecular systematics of the Primates, in: Molecular Anthropology (M. Goodman and R. E. Tashian, eds.), pp. 141–170, Plenum, New York.CrossRefGoogle Scholar
  88. Schwartz, J. H., Tattersall, I., and Eldredge, N. 1978. Phylogeny and classification of primates revisited. Yearb. Phys. Anthropol. 21: 95–133.Google Scholar
  89. Seligsohn, D. 1977. Analysis of species-specific molar adaptations in Strepsirhine Primates. Contrib. Primatol. 11: 1–116.PubMedGoogle Scholar
  90. Shellis, R. P., and Poole, D. F. G. 1979. The arrangement of prisms in the enamel of the anterior teeth of the aye-aye. Scanning Electron Microscop. 1979 (II): 481–490.Google Scholar
  91. Simons, E. L. 1961. The phyletic position of Ramapithecus. Postilla (Peabody Mus. Nat. Hist., Yale Univ.) 57: 1–9.Google Scholar
  92. Simons, E. L. 1976. The nature of the transition in the dental mechanism from pongids to hominids. J. Hum. Evol. 5: 511–528.CrossRefGoogle Scholar
  93. Simons, E. L. 1977. Ramapithecus. Sci. Am. 236 (5): 28–35.PubMedCrossRefGoogle Scholar
  94. Simons, E. L., and Pilbeam, D. R. 1972. Hominoid paleoprimatology, in: The Functional and Evolutionary Biology of Primates (R. Tuttle, ed.), pp. 36–62, Aldine-Atherton, Chicago.Google Scholar
  95. Simons, E. L., Andrews, P., and Pilbeam, D. R. 1978. Cenozoic apes, in: Evolution of African Mammals (V. J. Maglio and H. B. S. Cooke, eds.), pp. 120–146, Harvard University Press, Cambridge.Google Scholar
  96. Smith, R. J., and Pilbeam, D. R. 1980. Evolution of the orang-utan. Nature (Lond.) 284: 447–448.CrossRefGoogle Scholar
  97. Szâlay, F. S., and Delson, E. 1979. Evolutionary History of the Primates, pp. 434–502, Academic, New York.Google Scholar
  98. Tomes, J. 1849. On the structure of the dental tissues of marsupial animals, and more especially of the enamel. Phil. Trans. R. Soc. Lond. 150: 743–745.Google Scholar
  99. Von Koenigswald, G. H. R. 1952. Gigantopithecus blacki von Koenigswald, A giant fossil hominoid from the Pleistocene of southern China. Anthropol. Pap. Am. Mus. Nat. Hist., 43: 291–326.Google Scholar
  100. Von Koenigswald, W. 1977. Micmonys cf. reidi aus der villafranchischen Spaltenfullung Schambach bei Treuchflingen. Mitt. Bayer. Staatssamml. Paleaontol. Hist. Geol. 17: 197–212.Google Scholar
  101. Von Koenigswald, W. 1980. Schmelzstruktur und Morphologie in den Molaren der Arvicolidae (Rodentia). Abh. Senckenb. Naturforsch. Ges. 539: 1–129.Google Scholar
  102. Vrba, E. S., and Grine, F. E. 1978a. Australopithecine enamel prism patterns. Science 202: 890–892.PubMedCrossRefGoogle Scholar
  103. Vrba, E. S., and Grine, F. E. 1978b. Analysis of South African Australopithecine enamel prism patterns. Proc. Electron Microscop. Soc. S. Afr. 8: 125–126.Google Scholar
  104. Weatherell, J. A. 1975. Composition of dental enamel. Brit. Med. Bull. 31: 115–119.PubMedGoogle Scholar
  105. Wolpoff, M. H. 1973. Posterior tooth size, body size, and diet in South African gracile australopithecines. Am. J. Phys. Anthropol. 39: 375–394.PubMedCrossRefGoogle Scholar
  106. Zihlman, A. L., Cronin, J. E., Cramer, D. L., and Sarich, V. M. 1978. Pygmy chimpanzee as a possible prototype for the common ancestor of humans, chimpanzees, and gorillas. Nature (Lond.) 275: 744–746.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • D. G. Gantt
    • 1
  1. 1.Institute of Dental ResearchUniversity of Alabama School of Dentistry, University StationBirminghamUSA

Personalised recommendations