Comments on Flight and the Evolution of Bats

  • James Dale Smith
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 14)


Inasmuch as bats possess wings, are capable of sustained flight, and have become totally committed anatomically to this mode of existence, an interpretation of chiropteran evolution must first deal with the evolution of chiropteran flight. Unlike birds which can simply fold their wings, when not in use (and walk about on relatively unspecialized pelvic appendages) bats are essentially incapable of alternative forms of locomotion when not in flight. Of course, all bats can scurry about to some extent and vampire bats (Desmodontinae) are quite agile at walking on their elbows and wrists. However, by virtue of their anatomical adaptations for flight, bats have largely abandoned their terrestrial (i.e., quadrupedal) locomotory abilities. No other volant animal has made such a complete and drastic modification in its locomotory style; the only possible exceptions are the reptilian pterosaurs and flightless birds.


Late Miocene Middle Eocene World Tropic Locomotory Ability Synapomorphous Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachmayer, F., and Wilson, R.W., 1970, Die Fauna der altpliozanen Hohlenund Spaltenfullungen bei Kohfidisch, Burgenland Osterreich). Ann. Naturhistor. Mus. Wien., 73: 533–587.Google Scholar
  2. Butler, P.M., 1969, Insectivores and bats from the Miocene of East Africa. New material, Vol. 1:1–36, Academic Press, New York.Google Scholar
  3. Butler, P.M., and Greenwood, M., 1965, Olduvai Gorge 1951–1961, Vol. 1:1–15, Cambridge Univ. Press, Cambridge.Google Scholar
  4. Butler, P.M., and Hopwood, A.T., 1957, Insectivora and chiroptera from the Miocene rock of Kenya colony. Brit. Mus. (Nat. Hist. ), Fossil mammals of Africa, 13: 1–35.Google Scholar
  5. Dal Piaz, G., 1937, I. Mammiferi dell’Oligocene veneto. Archaeopteropus transiens, Mem. Instit. geol. R. Univ. Padova, 11: 1–8.Google Scholar
  6. Engesser, B., 1972, Die obermiozane Saugetierfauna von Anvil (Baselland). pp. 363, Ludin AG, Liestal.Google Scholar
  7. Findley, J.S., Studier, E.H., and Wilson, D.E., 1972, Morphologic properties of bat wings. Jour. Mamm., 53: 429–444.Google Scholar
  8. Griffin, D.R., 1958, Listening in the dark. pp. xviii+ 413, Yale Univ. Press, New Haven.Google Scholar
  9. Hennig, W., 1966, Phylogenetic systematics (Transi. Davis, D.D. and Zangerl, R.) pp. vi + 263, Univ. Illinois Press, Urbana.Google Scholar
  10. Henson, O.W., 1970, The central nervous system, in “Biology of Bats” (W.A. Wimsatt, ed.) Vol. 2, pp. 57–152, Academic Press, New York.Google Scholar
  11. Hill, J.E., 1974, A new family, genus and species of bat ( Mammalia: Chiroptera) from Thailand. Bull. Brit. Mus. (Nat. Hist. ), 27: 303–336.Google Scholar
  12. Lavocat, R., 1961, Le gisement de Vertebres Miocenes de Beni Mellal (Maroc). Etude systematique de la Faune des Mammiferes et conclusions generales. Notes et Mem. Serv. geol. Maroc., 15: 121.Google Scholar
  13. Mann, G., 1963, Phylogeny and cortical evolution in chiroptera. Evolution, 17: 589–591.CrossRefGoogle Scholar
  14. Meshinelli, L., 1903, Un nuovo chiroptero fossile (Archaeopteropus transiens Mesch.) delle liquiti di Monteviale. Atti. reale Instit. veneto Sci. Lett. Arti., 62 (2): 1329–1344.Google Scholar
  15. Miller, G.S., Jr., 1907, The families and genera of bats. Bull. U. S. Nat. Mus., 57: pp. xvii + 282.Google Scholar
  16. Norberg, U.M., 1970, Hovering flight of Plecotus auritus Linnaeus. Ark. Zool., 22: 483–543.Google Scholar
  17. Novick, A., 1958, Orientation in paleotropical bats. II. Megachiroptera. Jour. Exp. Zool., 137: 443–462.Google Scholar
  18. Russell, D.E., and Sige, B., 1970, Revision des chiroptereas lutetien de Messel (Hesse, Allemagne). Palaeovertebrata, Montpellier, 3: 83–182.Google Scholar
  19. Simpson, G.G., 1945, The principles of classification and a classification of mammals. Bull. Amer. Mus. Nat. Hist., 85: pp xvi + 350.Google Scholar
  20. Smith, J.D., 1972, Systematics of the chiropteran family Mormoopidae. Univ. Kansas Mus. Nat. Hist., Misc. Publ., 56: 1–132.Google Scholar
  21. Smith, J.D., 1976, Chiropteran evolution, in “Biology of bats of the New World family Phyllostomatidae Part I” (R.J. Baker, J.K. Jones, Jr., and D.C. Carter). Spec. Publ. Mus., Texas Tech Univ., 10: 49–69.Google Scholar
  22. Vaughan, T.A., 1970, Flight patterns and aerodynamics, in “Biology of Bats” (W.A. Wimsatt, ed.) Vol. 1, pp. 195–216, Academic Press, New York.Google Scholar
  23. Walker, A., 1969, True affinities of Propotto leakeyi. Simpson 1967, Nature, 223: 647–648.CrossRefGoogle Scholar
  24. Westphal, F., 1959, Neue Wirbeltierreste (Fledermase, Frosche, Reptilien) aus dem obermiozanen Travertin von Bottigen (Schwabische Alb). Neues Jb. Geol. u. Palaont., Abh., Stuttgart, 107: 341–366.Google Scholar
  25. Winge, A.H., 1923, Pattedyr-Slaegter. 1. Monotremata, Marsupialia, Insectivora, Chiroptera, Edentata, pp. 360, Copenhagen. (Transl. Deichmann, E., and Allen, G.M., 1941, The interrelationships of the mammalian genera, Vol. 1. Reitzels ed., pp. 418, Copenhagen).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • James Dale Smith
    • 1
  1. 1.Department of BiologyCalifornia State UniversityFullertonUSA

Personalised recommendations