The Methodology of Phylogenetic Inference Above the Species Level

  • Max K. Hecht
  • James L. Edwards
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 14)


The determination of the relationships of organisms in time and space is the process called phylogenetic inference. The process is termed an inference because one cannot directly observe evolution above the species level, and therefore, one must infer such relationships. Furthermore, it is impossible to devise experiments to directly test such relationships, but that does not mean that they cannot be falsified by new data, such as the discovery of new fossils or recent organisms, or the re-analysis of the characters of previously known organisms.


Character State Phylogenetic Inference Primitive State Transformation Series Gill Slit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avise, J.C. and Ayala, F.J., 1975, Genetic change and rates of cladogenesis. Genetics 81: 757–773.PubMedGoogle Scholar
  2. Ayala, F.J., 1975, Genetic differentiation during the speciation process. Evol. Biol., 8: 1–78.Google Scholar
  3. Bannikov, A.G., 1958, Die Biologie des Froschzahnmolches Ranodon sibiricus Kessler. Zool. Jahrb., Abt. f. Syst., 83: 2 E2 5.Google Scholar
  4. Bock, W.J., 1965, The role of adaptive mechanisms in the origin of higher levels of organization. Syst. Zool., 14: 272–287.Google Scholar
  5. Bock, W.J., 1973, Philosophical foundations of classical evolutionary classification. Syst. Zool., 22: 375.Google Scholar
  6. Bonde, N., 1975, Origin of “higher groups”: viewpoints of phylogenetic systematics, Prob. Actuels Paleo., Evol. Vert., Colloques Inter. C.N.R.S., 218: 293.Google Scholar
  7. Camin, J.H. and Sokal, R.R., 1965, A method for deducing branching sequences in phylogeny. Evol., 19: 311.Google Scholar
  8. Camp, C.L., 1923, Classification of the lizards. Bull. Amer. Mus. Nat. Hist., 48: 289.Google Scholar
  9. Cracraft, J., 1974, Phylogenetic models and classification. Syst. Zool., 23: 71.Google Scholar
  10. Dunn, E.R., 1941, The “opercularis” muscle of salamanders. J. Morph., 69: 207.CrossRefGoogle Scholar
  11. Edwards, J.L., 1976, Spinal nerves and their bearing on salamander phylogeny. J. Morph., 148: 305.PubMedCrossRefGoogle Scholar
  12. Eldredge, N. and Gould, S.J., 1972, Punctuated equilibria: An alternative to phyletic gradualism, in “Models in Paleobiology” (T.J.M. Schopf, ed.), pp. 82–115, Freeman, Cooper, San Francisco.Google Scholar
  13. Eldredge, N. and Tattersall, I., 1975, Evolutionary models, phylogenetic reconstruction, and another look at hominid phylogeny. Contrib. Primat., 5: 218–242.Google Scholar
  14. Estes, R., 1964, Fossil vertebrates from the Late Cretaceous Lance Formation, eastern Wyoming, Univ. Calif. Publ. Geol. Scis., 49: 1.Google Scholar
  15. Estes, R., 1975, Lower Vertebrates from the Fort Union Formation, Late Paleocene, Big Horn Basin, Wyoming. Herpetologica 31: 365–385.Google Scholar
  16. Estes, R., Hecht, M. and Hoffstetter, R., 1967, Paleocene amphibians from Cernay, France. Amer. Mus. Novitates., 2295: 1.Google Scholar
  17. Fitch, W.M. and Margoliash, E., 1970, The usefulness of amino acid and nucleotide sequences in evolutionary studies. Evol. Biol., 4: 67–109.Google Scholar
  18. Gingerich, P.D., 1976, Paleontology and phylogeny: patterns of evolution at the species level in Early Tertiary mammals. Amer. J. Sci., 276: 1.Google Scholar
  19. Goin, C.J. and Goin, O.B., 1962, “Introduction to herpetology,” W.H. Freeman and Co., San Francisco.Google Scholar
  20. Harper, C.W., Jr., 1976, Phylogenetic inference in paleontology. J. Paleo., 50: 180.Google Scholar
  21. Hecht, M.K., 1957, A case of parallel evolution in salamanders. Proc. Zool. Soc., Calcutta, Mookerjee Memor., Vol: 283.Google Scholar
  22. Hecht, M.K., 1974, Morphological transformation, the fossil record, and the mechanisms of evolution: A debate, Part I. Evol. Biol., 8: 295–308.Google Scholar
  23. Hecht, M.K., 1976, Phylogenetic inference and methodology as applied to the vertebrate record. Evol. Biol., 9: 335–363.Google Scholar
  24. Hecht, M.K. and Edwards, J.L., 1976, The determination of parallel or monophyletic relationships: the proteid salamanders a test case. Amer. Natur., 110: 653.CrossRefGoogle Scholar
  25. Hennig, W., 1966, “Phylogenetic systematics,” University of Illinois Press, Urbana.Google Scholar
  26. Herre, W., 1935, Die Schwanzlurche der mitteleocanen (oberlutetischen) Braunkohle des Geiseltales und die Phylogenie der Urodelen unter Einschluss der fossilen Formen. Zoologica, 33: 1.Google Scholar
  27. Heyer, W.R., 1975, A preliminary analysis of the intergeneric relationships of the frog family Leptodactylidae. Smithsonian Contribution to Zoology, 233: 1–29.Google Scholar
  28. Hoffstetter, R., 1955 Squamates de type moderne, “Traite de paleontologie, 5. Amphibiens, reptiles et oiseaux,” (J. Piveteau, ed.), pp. 606–662, Masson, Paris.Google Scholar
  29. Hoffstetter, R., 1962, Revue des recentes acquisitions concernant l’histoire et la systematique des squamates. Colloques Inter. C. N. R. S., 104: 243.Google Scholar
  30. Hoffstetter, R., 1964, Les Sauria du Jurassique superieur et specialment les Gekkota de Baviere et de Mandchourie, Senskenbergiana Biol., 45: 281.Google Scholar
  31. Hoffstetter, R. and Gasc, J.P., 1969, Vertebrae and ribs of modern reptiles, in “Biology of the Reptilia, vol. 1” (C. Gans, A. d’A. Bellairs and T.S. Parsons, eds.), pp. 201–310, Academic Press, London.Google Scholar
  32. Holder, L.A., 1960, The comparative morphology of the axial skeleton in the Australian Gekkonidae. J. Linnean Soc. Zool., 44: 300.Google Scholar
  33. Inger, R.F., 1967, The development of frogs, Evol., 21: 369.CrossRefGoogle Scholar
  34. Jardine, N. and Jardine, C.J., 1967, Numerical Homology. Nature 216 (5112): 301–302.CrossRefGoogle Scholar
  35. King, M.C. and Wilson, A.C., 1975, Evolution at two levels in humans and chimpanzees. Science, 188: 107.PubMedCrossRefGoogle Scholar
  36. Kluge, A.G. and Farris, J.S., 1969, Quantitative phyletics and the evolution of anurans. Syst. Zool., 18: 1.CrossRefGoogle Scholar
  37. Kurten, B., 1963, Return of a lost structure in the evolution of felid dentition. Soc. Scienti. Fenn. Comment. Biol., 26: 4.Google Scholar
  38. Larsen, J., Jr., 1963, The cranial osteology of neotenic and transformed salamanders and its bearing on interfamial relationships, unpublished Ph.D. thesis, Univ. of Washington.Google Scholar
  39. Marx, H. and Rabb, G.B., 1970, Character analysis: an empirical approach applied to advanced snakes. J. Zool., London 161: 525.CrossRefGoogle Scholar
  40. Marx, H. and Rabb, G.B., 1972, Phyletic analysis of fifty characters of advanced snakes, Fieldiana, Zool., 63: 1.Google Scholar
  41. Mayr, E., 1963, Animal species and evolution, The Belknap Press, Harvard University Press, Cambridge, Mass., 797 pp.Google Scholar
  42. Mayr, E., 1965, Numerical phenetics and taxonomic theory. Syst. Zool., 14: 73.Google Scholar
  43. McHenry, H.M., 1975, Fossils and the mosaic nature of human evolution. Science 190: 425.PubMedCrossRefGoogle Scholar
  44. McKenna, M.C., 1975, Toward a phylogenetic classification of the Mammalia, in “Phylogeny of the primates” (W.P. Luckett and F.S. Szalay, eds.), pp. 21–46, Plenum, New York.Google Scholar
  45. Michener, C.D. and Sokal, R.R., 1957, A quantitative approach to a problem in classification. Evol., 11: 130–162.CrossRefGoogle Scholar
  46. Moffat, L.A., 1972, The phylogenetic significance of notochorsal centra in amphibians and reptiles: a comparative study of vertebral morphology and development in Leiopelma (Amphibia: Anura) and the Gekkota (Reptilia: Lacertilia), unpublished Ph.D. thesis, Univ. of Sydney, Australia.Google Scholar
  47. Moffat, L.A., 1973, The concept of primitiveness and its bearing on the phylogenetic classification of the Gekkota. Proc. Linnean Soc. New South Wales 97: 275.Google Scholar
  48. Monath, T., 1965, The opercular apparatus of salamanders. J. Morph., 116: 149.CrossRefGoogle Scholar
  49. Morescalchi, A., 1975, Chromosome evolution in the caudate Amphibia. Evol. Biol., 8: 339.Google Scholar
  50. Morescalchi, A. and Olmo, E., 1974, Sirenids: a family of polyploid urodeles? Experientia 30: 491.PubMedCrossRefGoogle Scholar
  51. Nelson, G.J., 1971, Paraphyly and polyphyly: redefinitions. Syst. Zool., 20: 471.Google Scholar
  52. Noble, G.K., 1925, An outline of the relation of ontogeny to phylogeny within the Amphibia. II, Amer. Mus. Novitates 166: 1.Google Scholar
  53. Noble, G.K., 1931, G.K., 1931, “The biology of the Amphibia,” reprint by Dover Publications, New York, 1954.Google Scholar
  54. Orton, G.L., 1957, The bearing of larval evolution on some problems in frog classification. Syst. Zool., 6: 79.Google Scholar
  55. Pilbeam, D. and Gould, S.J., 1974, Size and scaling in human evolution. Science 186: 892.PubMedCrossRefGoogle Scholar
  56. Regal, P.J., 1966, Feeding specializations and the classification of terrestrial salamanders. Evol., 20: 392.CrossRefGoogle Scholar
  57. Robinson, P., 1962, Gliding lizards from the Upper Keuper of Great Britain, Proc. Geol. Soc., 1601: 137.Google Scholar
  58. Rogers, D.J., Fleming, H.S. and Estabrook, G., 1967, Use of computers in studies of taxonomy and evolution. Evol. Biol., 1: 169.Google Scholar
  59. Romer, A.S., 1956, “Osteology of the reptiles,” Univ. of Chicago Press.Google Scholar
  60. Schaeffer, B. and Hecht, M.K., 1975, Introduction and historical background, symposium on higher levels of organization. Syst. Zool., 14: 245.Google Scholar
  61. Schaeffer, B., Hecht, M.K. and Eldredge, N., 1972, Phylogeny and paleontology. Evol. Biol., 6: 31.CrossRefGoogle Scholar
  62. Simpson, G.G., 1961, “Principles of animal taxonomy,” Colombia Univ. Press, New York.Google Scholar
  63. Simpson, G.G., 1975, Recent advances in methods of phylogenetic inference, in “Phylogeny of the primates” (W.P. Luckett and F.S. Szalay, eds.), pp. 3–19, Plenum, New York.Google Scholar
  64. Sneath, P.H.A. and Sokal, R.R., 1973, “Numerical taxonomy,” W.H. Freeman and Co., San Francisco.Google Scholar
  65. Sokol, O., 1975, The phylogeny of anuran larvae: a new look. Copeia 1975:1.Google Scholar
  66. Starrett, P.H., 1975, Evolutionary patterns in larval morphology, in “Evolutionary biology of the anurans” (J.L. Vial, ed.), pp. 251–271, Univ. of Missouri Press, Columbia.Google Scholar
  67. Throckmorton, L.H., 1968, Concordance and discordance of taxonomic characters in Drosophila classification. Syst. Zool., 17: 355.Google Scholar
  68. Underwood, G., 1954, On the classification and evolution of geckos. Proc. Zool. Soc. London 1954: 46.Google Scholar
  69. Underwood, G., 1955, Classification of geckos. Nature 175:1089. Underwood, G., 1957, On lizards of the family Pygopodidae. A contribution to the morphology and phylogeny of the Squamata. J. Morph., 100: 207.Google Scholar
  70. Wake, D.B., 1966, Comparative osteology and evolution of the lungless salamanders, family Plethodontidae. Mem. South Calif. Acad. Sci., 4: 1.Google Scholar
  71. Wilson, E.O., 1965, A consistency test for phylogenies based on contemporaneous species. Syst. Zool., 14: 214.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Max K. Hecht
    • 1
  • James L. Edwards
    • 2
  1. 1.Dept. of BiologyQueens College of C.U.N.Y.FlushingUSA
  2. 2.Zoology DeptMichigan State UniversityEast LansingUSA

Personalised recommendations