Spontaneous Supersymmetry Breaking and Metastable Vacua

  • G. Domokos
  • S. Kovesi-Domokos
Part of the Studies in the Natural Sciences book series (SNS, volume 20)


The question of a dynamical breakdown of supersymmetry is discussed and a recently proved “no-go theorem” is reviewed. We analyze the possibility that a supersymmetry-breaking vacuum is metastable. Long lifetimes of such vacua can be easily achieved without fine-tuning the parameters of the models. Models with metastable vacua can be made quite economical: internal symmetries and supersymmetry can be broken by the same Higgs fields at comparable mass scales.


Supersymmetry Breaking SUSY Breaking Vacuum Expectation Value Higgs Field Internal Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Grisaru, W. Siegel and M. Rocek, Nucl. Phys. B159, 429 (1979).CrossRefGoogle Scholar
  2. 2.
    L. O’Raifertaigh, Nucl. Phys. B96, 331 (1975).CrossRefGoogle Scholar
  3. 3.
    M. Dine, in Proc. Sixth Johns Hopkins Workshop on Current Problems in Particle Theory. ( G. Domokos and S. Kövesi-Domokos, Editors). Johns Hopkins University, Baltimore, MD. 1982.Google Scholar
  4. 4.
    S. Dimopoulos and S. Raby, Nucl. Phys. B192, 353 (1981).CrossRefGoogle Scholar
  5. E. Witten, Nucl. Phys. B185, 513 (1981).CrossRefGoogle Scholar
  6. M. Dine, W. Fischler and M. Srednicki, Nucl. Phys. B189, 575 (1981).CrossRefGoogle Scholar
  7. 5.
    See for instance H. P. Nilles, Phys. Lett. 112B, 409 (1982).Google Scholar
  8. G. Domokos and S. Kövesi-Domokos, Phys. Rev. D (to be published).Google Scholar
  9. 6.
    G. Domokos and S. Kövesi-Domokos, Phys. Letters 120B, 101 (1983).Google Scholar
  10. 7.
    G. Jona-Lasinio, Nuovo Cim. 34, 1970 (1964).CrossRefGoogle Scholar
  11. G. Domokos and P. Suranyi, Sov. Jour. Nucl. Phys. 2, 361 (1966).Google Scholar
  12. B. Zumino, in Brandeis Lectures in Elementary Particles and Quantum Field Theory. ( S. Deser and H. Pendleton, Editors). MIT Press, Cambridge, MA. (1970).Google Scholar
  13. 8.
    G. Domokos and S. Kövesi-Domokos, Johns Hopkins University preprint, JHU-HET 8203 (1982). To be published in the Festschrift honoring F. Gursey’s 60th birthday.Google Scholar
  14. 9.
    J,M. Cornwall, R. Jackiw and E. Tomboulis, Phys, Rev. D10 2428 (1974).Google Scholar
  15. 10.
    Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).CrossRefGoogle Scholar
  16. 11.
    We use the standard decomposition of chiral superfields, viz. Φ(y,θ) = A(y) + 2½(θ.ψ)(y)) + θ2F(y), cf. J. Bagger and J. Wess, Supersymmetry and Supergravity, Princeton University Press (to be published).Google Scholar
  17. 12.
    M.S. Turner and F. Wilczek, Nature 298, 633 (1982).CrossRefGoogle Scholar
  18. 13.
    S. Coleman, Phys. Rev. D15, 2929 (1977).CrossRefGoogle Scholar
  19. G. Callan and S. Coleman, ibid. D16, 1762 (1977).Google Scholar
  20. 14.
    A. Das and M. Kaku, Phys. Rev. D18, 4540 (1978).CrossRefGoogle Scholar
  21. L. Girardello, M.T. Grisaru and P. Salomonson, Nucl. Phys. B178, 331 (1981).CrossRefGoogle Scholar
  22. 15.
    Cf. IMB Collaboration, talks of F. Reines and M. Goldhaber, these Proceedings.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • G. Domokos
    • 1
  • S. Kovesi-Domokos
    • 1
  1. 1.Department of PhysicsJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations