B-L Violating Supersymmetric Couplings

  • P. Ramond
Part of the Studies in the Natural Sciences book series (SNS, volume 20)


We consider two problems: One is the possible effect of the breaking of Peccei-Quinn1 symmetry on the inflationary universe scenario; the other is the remark that even the minimal supersymmetric SU5 theory contains B-L violating couplings which give rise to neutrino masses and family-diagonal proton decay. However, the strength of these couplings is limited by the gauge hierarchy.


Neutrino Masse Order Phase Transition Higgs Doublet Proton Decay Grand Unify Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.D. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (1977).CrossRefGoogle Scholar
  2. 2.
    J. Ellis and M.K. Gaillard, Nucl. Phys. B150, 141 (1979).CrossRefGoogle Scholar
  3. 3.
    S. Weinberg, Phys. Rev. Lett. 40, 223 (1978);CrossRefGoogle Scholar
  4. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).CrossRefGoogle Scholar
  5. 4.
    L. Abbott and P. Sikivie, Brandeis preprint, Sept. 1982;Google Scholar
  6. J. Preskill, M. Wise and F. Wilczek, Harvard preprint, Sept. 1982;Google Scholar
  7. M. Dine and W. Fischler, Penn. preprint, Sept. 1982.Google Scholar
  8. 5.
    D.A. Dicus, E.W. Kolb, V.L. Teplitz and R.V. Wagoner, Phys. Rev. D22, 839 (1980);Google Scholar
  9. M. Fukugita, S. Watamura and M. Yoshimura, Phys. Rev. Lett. 48, 1522 (1982).CrossRefGoogle Scholar
  10. 6.
    For a review see R.D. Peccei in Neutrino 81, Hawaii, July 1981.Google Scholar
  11. 7.
    J. Ipser and P. Sikivie, University of Florida preprint TP-83–1, January 1983.Google Scholar
  12. 8.
    A.H. Guth, Phys. Rev. D23, 347 (1981).Google Scholar
  13. 9.
    E. Witten, Nucl. Phys. 177B, 477 (1981).CrossRefGoogle Scholar
  14. 10.
    A. Albrecht and P.J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982)CrossRefGoogle Scholar
  15. A.D. Linde, Phys. Lett. 108B, 389 (1982).Google Scholar
  16. 11.
    For a review see “Supersymmetry and Supergravity” by J. Wess, lectures given at Princeton University, 1982, to be published by Princeton University Press.Google Scholar
  17. 12.
    L. Maiani, in Proc. Ecole d’Ete de Physique des particules (Gif-sur-Yvette, 1979 ), p. 3.Google Scholar
  18. E. Witten, Nucl. Phys. B186, 513 (1981).CrossRefGoogle Scholar
  19. S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150 (1981).CrossRefGoogle Scholar
  20. N. Sakai, Z. Phys. 11, 153 (1982).Google Scholar
  21. H.P. Nilles and S. Raby, Nucl. Phys. B198, 102 (1982).CrossRefGoogle Scholar
  22. 13.
    S. Dimopoulos and S. Raby, Nucl. Phys. B192, 353 (1982).CrossRefGoogle Scholar
  23. M. Dine, W. Fischler, and M. Srednicki, Nucl. Phys. B189, 575 (1981).CrossRefGoogle Scholar
  24. 14.
    J. Ellis, L.E. Ibanez and G.G. Ross, Phys. Lett. 113B, 283 (1982).Google Scholar
  25. 15.
    S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979);CrossRefGoogle Scholar
  26. F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979).CrossRefGoogle Scholar
  27. 16.
    S. Weinberg, Supersymmetry at ordinary energies - HUTP-81/A047;Google Scholar
  28. N. Sakai and T. Yanagida, Proton decay models, Max Planck preprint (Oct, 1981 );Google Scholar
  29. S. Dimopoulos, S. Raby, and F. Wilczek, Phys. Lett. 112B, 133 (1982).Google Scholar
  30. 17.
    P. Ramond, Sanibel talk, Feb. 1979, CALT-68–709 unpublished. Nonzero neutrino masses are made possible by the presence of extra fields, the supersymmetric partners of the ordinary particles. For the effect of extra fields in generating neutrino masses in non supersymmetric theories, see for instance A. Zee, Phys. Lett. 93B, 389 (1980).Google Scholar
  31. 18.
    For a more sophisticated potential which ensures m2 = 0 naturally, see Ref. (14).Google Scholar
  32. 19.
    M. Bowick, M. Chase and P. Ramond, in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • P. Ramond
    • 1
  1. 1.Department of PhysicsUniversity of FloridaGainesvilleUSA

Personalised recommendations