Advertisement

A Search for Proton Decay into e+π° Irvine-Michigan-Brookhaven Collaboration

  • R. M. Bionta
  • G. Blewitt
  • C. B. Bratton
  • B. G. Cortez
  • S. Errede
  • G. W. Foster
  • W. Gajewski
  • M. Goldhaber
  • J. Greenberg
  • T. J. Haines
  • T. W. Jones
  • D. Kielczewska
  • W. R. Kropp
  • J. G. Learned
  • E. Lehmann
  • J. M. LoSecco
  • P. V. Ramana Murthy
  • H. S. Park
  • F. Reines
  • J. Schultz
  • E. Shumard
  • D. Sinclair
  • D. W. Smith
  • H. W. Sobel
  • J. L. Stone
  • L. R. Sulak
  • R. Svoboda
  • J. C. van der Velde
  • C. Wuest
Part of the Studies in the Natural Sciences book series (SNS, volume 20)

Abstract

Observations were made 1570 mwe underground with an 8000 metric ton water Cherenkov detector. During a live-time of 80 days no events consistent with the decay p → e+π° were found in a fiducial mass of 3300 metric tons. We conclude that the limit on the lifetime for bound plus free protons divided by the e+π° branching ratio is τ/B > 1.9 × 1031 yr. (90% confidence). Observed cosmic ray muons and neutrinos are compatible with expectations.

Keywords

Proton Decay Atmospheric Neutrino Free Proton Cherenkov Light Track Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. 1.
    H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974);CrossRefGoogle Scholar
  2. P. Langacker, Phys. Rev. 72, 185 (1981)Google Scholar
  3. Proceedings of the 1982 Workshop on Proton Decay, ANL-HEP-82–24 (D.S. Ayres, Ed. ) P. 64;Google Scholar
  4. M.A.B. Beg and A. Sirlin, Phys. Rep. 88, 1 (1982).CrossRefGoogle Scholar
  5. See also N. Isgur and M.B. Wise, Phys. Lett. 117B, 179 (1982)Google Scholar
  6. W.J. Marciano, BML 31036, presented at Orbis Scientiae 1982.Google Scholar
  7. 2.
    M.R. Krishnaswamy, et. al., Phys. Lett. 115B, 4, p. 349, (1982).CrossRefGoogle Scholar
  8. 3.
    G. Battistoni, Phys. Lett. 118B, p. 461 (1982).Google Scholar
  9. 4.
    R. Bionta, et. al., Proceedings of the 1982 Moriond Conf., Tran Than Van, ed., (1982).Google Scholar
  10. 5.
    More precisely, the trigger requires that either 12 PMT’s fire within 50 nsec. or that 3 PMT’s fire in any 2 of 32 groupings of 8 x 8 PMT’s in 150 nsec.Google Scholar
  11. 6.
    The actual fiducial volume cut is topology dependent and can be as close as 1.0 m from the tube planes in rare cases. This work is supported in part by the U.S. Department of Energy. Our nominal “fiducial mass” is obtained by determining the fraction of simulated events generated throughout the entire detector which pass all of our filtering cuts.Google Scholar
  12. 7.
    In the energy range with which we are concerned, the ratio is expected to be ~ 2/1. Due to the different sensitivities of our detector to electrons and muons, with the requirement of 45 PMT’s we expect that the observed ratio will be - 0.5.Google Scholar
  13. 8.
    H. Deden, et. al., Nuclear Physics B85, 269 (1975).CrossRefGoogle Scholar
  14. 9.
    J.L. Osborne and E.C.M. Young in “Cosmic Rays at Ground Level” (A. Wolfendale, ed. ) 1973.Google Scholar
  15. 10.
    S.J. Barish, et. al, Phys. Rev. D. 19, 2521 (1979).CrossRefGoogle Scholar
  16. 11.
    These two events have 15 and 12 PMT’s respectively associated with a muon decay electron in a time window of 100 ns. Both of these numbers are far above the threshold of 6 PMT’s set by accidental coincidences in our second timing scale.Google Scholar
  17. 12.
    C.B. Dover, M. Goldhaber, P.L. Trueman and L.L. Chau, Phys. Rev, D 24, 2886 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • R. M. Bionta
    • 2
  • G. Blewitt
    • 4
  • C. B. Bratton
    • 5
  • B. G. Cortez
    • 2
    • 8
  • S. Errede
    • 2
  • G. W. Foster
    • 2
    • 8
  • W. Gajewski
    • 1
  • M. Goldhaber
    • 3
  • J. Greenberg
    • 2
  • T. J. Haines
    • 1
  • T. W. Jones
    • 2
    • 7
  • D. Kielczewska
    • 1
  • W. R. Kropp
    • 1
  • J. G. Learned
    • 6
  • E. Lehmann
    • 4
  • J. M. LoSecco
    • 4
  • P. V. Ramana Murthy
    • 1
    • 2
  • H. S. Park
    • 2
  • F. Reines
    • 1
  • J. Schultz
    • 1
  • E. Shumard
    • 2
  • D. Sinclair
    • 2
  • D. W. Smith
    • 1
  • H. W. Sobel
    • 1
  • J. L. Stone
    • 2
  • L. R. Sulak
    • 2
  • R. Svoboda
    • 6
  • J. C. van der Velde
    • 2
  • C. Wuest
    • 1
  1. 1.The University of California at IrvineIrvineUSA
  2. 2.The University of MichiganAnn ArborUSA
  3. 3.Brookhaven National LabratoryUptonUSA
  4. 4.California Institute of TechnologyPasadenaUSA
  5. 5.Cleveland State UniversityClevelandUSA
  6. 6.The University of HawaiiHonoluluUSA
  7. 7.University CollegeLondonUK
  8. 8.Harvard UniversityUSA

Personalised recommendations