Skip to main content

Gravitation and Electromagnetism Covariant Theories a La Dirac

  • Chapter
High-Energy Physics

Part of the book series: Studies in the Natural Sciences ((SNS,volume 20))

  • 69 Accesses

Abstract

A generalization of the Weyl-Dirac theory is given in which the Dirac scalar field ß(x) is complex. The electromagnetic field finds its origin in regions of space multiconnected relative to the functions φ = arg ß, while |ß| mediates the coupling between gravity and electromagnetism. Since the electromagnetic flux is quantized, length integrability is partly restored to the theory.

Research supported by the Natural Sciences and Engineering Research Council of Canada

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Weyl, Raum. Zeit, Materie, Vierte erweiterte Auflage, Springer Verlag, Berlin 1921.

    Google Scholar 

  2. P.A.M. Dirac, Proc. R. Soc. London 333A, 403 (1973).

    Google Scholar 

  3. Notations and co-covariant calculus are summarized in the Appendix.

    Google Scholar 

  4. F. London, Superfluids, Vol. 1, Dover Publications, New York, 1960.

    Google Scholar 

  5. H.B. Nielsen and P. Olesen, Nucl. Phys. 61B, 45 (1973).

    Google Scholar 

  6. D. Gregorash and G. Papini, N. Cim. 63B, 487 (1981).

    Article  Google Scholar 

  7. D. Gregorash and G. Papini, Phys. Letts. 82A, 67 (1981)

    Google Scholar 

  8. D. Gregorash and G. Papini, N. Cim 70B, 259 (1982).

    Article  Google Scholar 

  9. G. Papini, Proc. Third Marcel Grossman Meeting, Shanghai, 1982 (in press).

    Google Scholar 

  10. M. Wadati, H. Matsumoto and H. Umezawa, Phys. Rev. 18D, 520 (1982).

    Google Scholar 

  11. Similar results can be obtained by introducing torsion: D. Gregorash and G. Papini, N. Cim. 55B, 37 (1980);

    Google Scholar 

  12. D. Gregorash and G. Papini, N. Cim. 56B, 21 (1980);

    Article  Google Scholar 

  13. D. Gregorash and G. Papini, N. Cim. 64B, 55 (1981).

    Article  Google Scholar 

  14. Somewhat similar results can be derived from the scalar-tensor theory of gravitation of Y. Fujii, Gen. Rel. Gray. 6, 29 (1975).

    Google Scholar 

  15. A.S. Goldhaber, M.M. Nieto, L. Davis, Sc. Am. May 1976.

    Google Scholar 

  16. Similar views are expressed in an entirely nongravitational context by E.J. Post, Phys. Rev. 9D, 3379 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Papini, G. (1985). Gravitation and Electromagnetism Covariant Theories a La Dirac. In: Mintz, S.L., Perlmutter, A. (eds) High-Energy Physics. Studies in the Natural Sciences, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8848-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8848-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8850-0

  • Online ISBN: 978-1-4684-8848-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics