Advertisement

Gravitation and Electromagnetism Covariant Theories a La Dirac

  • G. Papini
Part of the Studies in the Natural Sciences book series (SNS, volume 20)

Abstract

A generalization of the Weyl-Dirac theory is given in which the Dirac scalar field ß(x) is complex. The electromagnetic field finds its origin in regions of space multiconnected relative to the functions φ = arg ß, while |ß| mediates the coupling between gravity and electromagnetism. Since the electromagnetic flux is quantized, length integrability is partly restored to the theory.

Keywords

Electromagnetic Field Riemannian Geometry Meissner Effect Photon Mass Parallel Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Weyl, Raum. Zeit, Materie, Vierte erweiterte Auflage, Springer Verlag, Berlin 1921.Google Scholar
  2. 2.
    P.A.M. Dirac, Proc. R. Soc. London 333A, 403 (1973).Google Scholar
  3. 3.
    Notations and co-covariant calculus are summarized in the Appendix.Google Scholar
  4. 4.
    F. London, Superfluids, Vol. 1, Dover Publications, New York, 1960.Google Scholar
  5. 5.
    H.B. Nielsen and P. Olesen, Nucl. Phys. 61B, 45 (1973).Google Scholar
  6. 6.
    D. Gregorash and G. Papini, N. Cim. 63B, 487 (1981).CrossRefGoogle Scholar
  7. 7.
    D. Gregorash and G. Papini, Phys. Letts. 82A, 67 (1981)Google Scholar
  8. 8.
    D. Gregorash and G. Papini, N. Cim 70B, 259 (1982).CrossRefGoogle Scholar
  9. 9.
    G. Papini, Proc. Third Marcel Grossman Meeting, Shanghai, 1982 (in press).Google Scholar
  10. 10.
    M. Wadati, H. Matsumoto and H. Umezawa, Phys. Rev. 18D, 520 (1982).Google Scholar
  11. 11.
    Similar results can be obtained by introducing torsion: D. Gregorash and G. Papini, N. Cim. 55B, 37 (1980);Google Scholar
  12. D. Gregorash and G. Papini, N. Cim. 56B, 21 (1980);CrossRefGoogle Scholar
  13. D. Gregorash and G. Papini, N. Cim. 64B, 55 (1981).CrossRefGoogle Scholar
  14. 12.
    Somewhat similar results can be derived from the scalar-tensor theory of gravitation of Y. Fujii, Gen. Rel. Gray. 6, 29 (1975).Google Scholar
  15. 13.
    A.S. Goldhaber, M.M. Nieto, L. Davis, Sc. Am. May 1976.Google Scholar
  16. 14.
    Similar views are expressed in an entirely nongravitational context by E.J. Post, Phys. Rev. 9D, 3379 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • G. Papini
    • 1
  1. 1.University of ReginaReginaCanada

Personalised recommendations