Skip to main content

Supergravity Grand Unification

  • Chapter
High-Energy Physics

Part of the book series: Studies in the Natural Sciences ((SNS,volume 20))

  • 68 Accesses

Abstract

A review of the recent proposal of Supergravity Grand Unification is given. Topics include the structure of Supergravity GUTS, symmetry breaking through Supergravity induced effects, protection at low energy from intermediate and superheavy mass scales, effective potential and the particle spectrum at low energy. Experimental consequences of Supergravity GUTS and in particular the decays of W and Z into photino, Wino and Zino modes and their branching ratios in various channels are also discussed.

Research is supported in part by the National Science Foundation under Grant No. PHY 77-22864 and Grant No. 80-8333.

On sabbatical leave from the Department of Physics, Northeastern University, Boston, MA 02115.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.H. Chamseddine, R. Arnowitt and P. Nath, Phys. Rev. Lett. 49, 970 (1982).

    Article  Google Scholar 

  2. P. Nath, R. Arnowitt and A.H. Chamseddine, Phys. Letters 121B, 33 (1983).

    Google Scholar 

  3. R. Arnowitt, A.H. Chamsiddine and P. Nath, Phys. Letters 120B, 145 (1983).

    Google Scholar 

  4. L.E. Ibanes, TH, 3374-CERN (1982); Universidad Autonoma de Madrid preprint, FTUAMI 82–8 (1982).

    Google Scholar 

  5. R. Barbieri, S. Ferrara and C.A. Savoy, Phys. Lett. 119B, 353 (1982);

    Google Scholar 

  6. H.P. Nilles, M. Srednicki and D. Wyler, TH 3432-CERN (1982).

    Google Scholar 

  7. J. Ellis, D.V. Nanopoulos and K. Tamvakis, Phys. Lett. 121B, 1231 (1983);

    Google Scholar 

  8. J. Ellis, J.S. Hagelin, D.V. Nanopoulos and K. Tamvakis, SLAC-POB-3042 (1983).

    Google Scholar 

  9. H.P. Nilles, M. Srednicki and D. Wyler, TH. 3461-CERN (1982);

    Google Scholar 

  10. B. Lahanas, TH. 3467-CERN (1982).

    Google Scholar 

  11. S. Ferrara, D.V. Nanopoulos and C.A. Savoy, TH. 3442-CERN (1982).

    Google Scholar 

  12. L. Hall, J. Lykken and S. Weinberg, University of Texas Report No. UTTG-1–83.

    Google Scholar 

  13. P. Nath, R. Arnowitt and A.H. Chamseddine, NUB112579 (1982)/ HUTP-82/A057.

    Google Scholar 

  14. N. Ohta, Tokyo-Preprint UT-388; C.S. Aulakh, CCNY-HEP-83/2;

    Google Scholar 

  15. J. Leon, M. Quiros and M. Ramon Medrano, Madrid Preprint.

    Google Scholar 

  16. L. Alvarez-Gaume, J. Polchinski and M.B. Wise HUTP-821A063/ CALT-68–990.

    Google Scholar 

  17. E. Cremmer, P. Fayet and L. Girandello, University of Paris preprint LPTENS-82/30 (1982);

    Google Scholar 

  18. S.K. Soni and H.A. Weldon, University of Pennsylvania preprint (1983).

    Google Scholar 

  19. S. Weinberg, Phys. Rev. Letters 50, 387 (1983).

    Article  Google Scholar 

  20. R. Arnowitt, A.H. Chamseddine and P. Nath, Phys. Rev. Letters 50, 232 (1983).

    Article  Google Scholar 

  21. E. Witten, Nucl. Phys. B177 (1981); B185, 513 (1981);

    Article  Google Scholar 

  22. M. Dine, W. Fishier and M. Srednicki, Phys. Lett. 104B, 199 (1981);

    Google Scholar 

  23. S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150 (1981);

    Article  Google Scholar 

  24. N. Sakai, Z. für Phys. C11, 153 (1981);

    Article  Google Scholar 

  25. D.V. Nanopoulos and K. Tamvakis, CERN preprints TH. 3327, 3247 (1982);

    Google Scholar 

  26. R.K. Kaul, Phys. Lett. 109B, 19 (1982);

    Google Scholar 

  27. C.S. Aulakh and R.H. Mohapatra Preprint CCNY-HEP-82/4; C. Nappi and V. Ovrut, Phys. Lett. 113B, 175 (1982);

    Article  Google Scholar 

  28. L. Alvarez-Gaume, M. Claudson and M.B. Wise, Nucl. Phys. B207, 96 (1982).

    Article  Google Scholar 

  29. For a recent review of globally sypersymmetric theories see P. Fayet, in proceedings of the 21st International Conference on High Energy Physics, Paris 26–31 July 1982, Journal de Physique C3–673.

    Google Scholar 

  30. J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974).

    Article  Google Scholar 

  31. D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Phys. Rev. 1013, 3214 (1976);

    Google Scholar 

  32. S. Deser and B. Zumino, Phys. Lett. 62B, 335 (1976).

    Google Scholar 

  33. S. Ferrara and P. van Nieuwenhuizen, Phys. Lett. 76B; J. Stelle and P. West, Phys. Lett. 77B, 376 (1978); 74B, 330 (1978); Nucl. Phys. B145, 175 (1978).

    Google Scholar 

  34. We use conventions of P. van Nieuwenhuizen, Phys. Reports 68 (4), 189–398 (1981).

    Google Scholar 

  35. E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen, Nucl. Phys. B147, 105 (1979)

    Article  Google Scholar 

  36. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Phys. Lett. 116, B231 (1982) Th. 3348-CERN (1982).

    Google Scholar 

  37. J. Bagger and E. Witten, Phys. Lett. 118B, 103 (1982);

    Google Scholar 

  38. J. Bagger, Nucl. Phys. B211, 302 (1983).

    Article  Google Scholar 

  39. (d-1)ba appearing in Eq. (2.11) is the inverse of the matrix d,ab-

    Google Scholar 

  40. B. Zumino, Phys. Lett. 87B, 203 (1979).

    Google Scholar 

  41. Such a choice is motivated in part by the reasoning that supergravity loop corrections would maintain an approximate U(n) symmetry among its n chiral superfields if the matter couplings are small.9a Thus, one may simulate gravitational quantum loop corrections in scalar potential by choosing a general function of ZaZa+ for d(Z,Z+).

    Google Scholar 

  42. In this case, Tab has at least one zero eigenvalue.

    Google Scholar 

  43. S. Dimopoulos and S. Raby, Los Alamos Preprint LA-UR-82–1282; J. Ellis, L. Ibanes and G. Ross, Rutherford Preprint RL 82–024 (1982);

    Google Scholar 

  44. J. Polchinsky and L. Susskind, Phys. Rev. D26, 3361 (1982).

    Article  Google Scholar 

  45. S. Weinberg, in General Relativity-An Einstein Centenary Survey, edited by S.W. Hawking and W. Israel ( Cambridge University Press, Cambridge, England, 1979 ), Chapter 16.

    Google Scholar 

  46. The simplest super-Higgs potential is a linear one defined by30 g2(Z) = m2(Z+B). The minima correspond to KZ(-1) = a(i2,); KB(-1) = -a(2i - f); a = ±1.

    Google Scholar 

  47. J. Polony, University of Budapest Report No. KFKI-1977–93, 1977 (unpublished); See also Ref. 20.

    Google Scholar 

  48. Actually one may maintain the desired protection and allow a mixed term in the superpotential e.g., g3(Za,Zs) = al abs ZaZbZs+ a2 ars ZaZrZs if the couplings al abs are 0(Kmg) and X2 ars are 0(K2mg2).

    Google Scholar 

  49. There are four mass parameters in the low energy effective potential for the case where one has a general Kühler metric in the original potential.9a

    Google Scholar 

  50. The necessity of fine tuning to achieve light Higgs doublets cannot be circumvented in an obvious way in this model. We thank C.S. Aulakh and J. Polchinsky for discussions on this question.

    Google Scholar 

  51. It is straightforward to construct global models where the Higgs doublets are naturally light using the “missing partner” mechanism. See in this context, B. Grinstein, Nucl. Phys. B206, 387–396 (1982);

    Google Scholar 

  52. A. Masiero, D.V. Nanopoulos, K. Tamvakis and T. Yanagida, Phys. Lett. 115B, 380 (1982);

    Google Scholar 

  53. H. Georgi, Phys. Lett. 108B, 283 (1982);

    Google Scholar 

  54. S. Dimopoulos and H. Georgi, HUTP-82/A046 (1982).

    Google Scholar 

  55. A similar suggestion has also been made by Ferrara et al. in Ref. 8 in the context of the missing partner scenario.34

    Google Scholar 

  56. For this purpose one needs a large mass of the top

    Google Scholar 

  57. A more general phenomenological analysis which can interpolate between the formalism where spontaneous breaking occurs at the tree level and the one where spontaneous symmetry breaking is triggered through radiative corrections can be given, and shall be presented elsewhere.

    Google Scholar 

  58. A model independent prediction of the existence of a Wino below the W meson mass and a Zino below the Z meson mass is given by S. Weinberg.13a

    Google Scholar 

  59. For the case of the linear super-Higgs model29 m1 has the value ml = 2 mg(3X - x) where X = a2/a1 and U = - msx/(v2 X3).

    Google Scholar 

  60. mH is a model dependent quantity proportional to the gravitino mass and for the linear super-Higgs model it has the value mÌi = mg + (3a - x) 231/2 as discussed in Ref. (13b).

    Google Scholar 

  61. For the model of Ref. 29, ß has the value ß = I(-x + 3X - 3 + /). In the more general analysis of Ref. 9a, allowing also for a curved Kahler manifold mv’ need not have the value m.

    Google Scholar 

  62. R. Arnowitt, C.H. Chamseddine and P. Nath (unpublished).

    Google Scholar 

  63. P. Fayet, Ecole Normale Superiere preprint LPTENS-82/12 (1982); J. Ellis and J.S. Hagelin, SLAC-PUB-3014 (1982).

    Google Scholar 

  64. P. Salati and J.C. Wallet, LAPP-TH-65 (1982).

    Google Scholar 

  65. R. Brandelik et al., Phys. Lett. 117B, 365 (1982).

    Google Scholar 

  66. P. Nath, R. Arnowitt and A.H. Chamseddine, “Wino and Zino Decays of the W and Z Mesons,” NUB2588.

    Google Scholar 

  67. There is an additional factor of 4 omitted in Eq. (16) of Ref. 13b and Eq. (47) of Ref. 48.

    Google Scholar 

  68. P. Nath, R. Arnowitt and A.H. Cham_seddine, “Global and Local Supersymmetric Grand Unification,” NUB#2586.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Nath, P., Arnowitt, R., Chamseddine, A.H. (1985). Supergravity Grand Unification. In: Mintz, S.L., Perlmutter, A. (eds) High-Energy Physics. Studies in the Natural Sciences, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8848-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8848-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8850-0

  • Online ISBN: 978-1-4684-8848-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics