Cosmological and Astrophysical Implications of Magnetic Monopoles

  • Edward W. Kolb
Part of the Studies in the Natural Sciences book series (SNS, volume 20)


Among Dirac’s many contributions to modern physics is the idea that charge quantization is natural in a theory with magnetic monopoles. The existence of magnetic monopoles would have drastic effects on the evolution of the universe, on galactic magnetic fields, and perhaps on the x-ray luminosity of neutron stars. In this talk I will review some astrophysical implications of massive monopoles.


Neutron Star Early Universe Proton Decay Grand Unify Theory Magnetic Monopole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.A.M. Dirac, Proc. Roy. Soc. 133, 60 (1931).CrossRefGoogle Scholar
  2. 2.
    G.’t Hooft, Nucl. Phys. B79, 276 (1974).CrossRefGoogle Scholar
  3. 3.
    A.M. Polyakov, JETP Lett. 20, 194 (1974).Google Scholar
  4. 4.
    Ya. B. Zel’dovich and M. Yu. Khlopov, Phys. Lett. 79B, 239 (1978).Google Scholar
  5. 5.
    J. P. Preskill, Phys. Rev. Lett. 43, 1365 (1979).CrossRefGoogle Scholar
  6. 6.
    T. W. B. Kibble, J. Phys. A9, 1387 (1976).Google Scholar
  7. 7.
    D. A. Dicus, D. N. Page, and V. L. Teptlitz, Phys. Rev. D26, 1306 (1982).CrossRefGoogle Scholar
  8. 8.
    J. A. Harvey, E. W. Kolb, and S. Wolfram, Phys. Rev. D27, 315 (1983).Google Scholar
  9. 9.
    A. Linde, Phys. Rev. D14, 3345 (1976).Google Scholar
  10. 10.
    J. A. Harvey and E. W. Kolb, Phys. Rev. D24, 2090 (1981).Google Scholar
  11. 11.
    T. Goldman, E. W. Kolb, and D. Toussaint, Phys. Rev. D23, 867 (1981);Google Scholar
  12. T. Goldman, E. W. Kolb, and D. Toussaint, J. N. Fry, Ap. J. 246, L93 (1981).Google Scholar
  13. 12.
    G. Lazarides and Q. Shafi, Phys. Lett. 94B, 149 (1980).Google Scholar
  14. 13.
    A. H. Guth and S.-H. H. Tye, Phys. Rev. Lett. 44, 631 (1980).CrossRefGoogle Scholar
  15. 14.
    M. B. Einhorn, D. L. Stein, and D. Toussaint, Phys. Rev. D21, 3295 (1980).Google Scholar
  16. 15.
    P. Langacker and S.-Y. Pi, Phys. Rev. Lett. 45, 1 (1980).CrossRefGoogle Scholar
  17. 16.
    G. F. Smoot and P. M. Lubin, Ap. J. 234, L83 (1979);CrossRefGoogle Scholar
  18. Fabbri, et al., Phys. Rev. Lett. 44, 1563 (1980);CrossRefGoogle Scholar
  19. Boughn, Cheng, and Wilkinson, Ap. J. 243, L113 (1981).CrossRefGoogle Scholar
  20. 17.
    E. N. Parker, Ap. J. 160, 383 (1970);CrossRefGoogle Scholar
  21. E. N. Parker, Ap. J. 163, 225 (1971); Ap. J. 166, 295 (1971).Google Scholar
  22. 18.
    M. S. Turner, E. N. Parker, and T. J. Bogdan, Phys. Rev. D26, 1296 (1982).Google Scholar
  23. 19.
    E. E. Salpeter, S. L. Shapiro, and I. Wasserman, Phys. Rev. Lett. 49, 1114 (1982).CrossRefGoogle Scholar
  24. 20.
    S. P. Ahlen and K. Kinoshita, Phys. Rev. 26D, 2347 (1982); see also S. D. Drell, et al. SLAC Report, unpublished.Google Scholar
  25. 21.
    J. K. Sokolowski and L. R. Sulak, University of Michigan Report, unpublished.Google Scholar
  26. 22.
    J. D. Ullman, Phys. Rev. Lett. 47, 289 (1981).CrossRefGoogle Scholar
  27. 23.
    D. E. Groom, et al., University of Utal Report, unpublished.Google Scholar
  28. 24.
    R. Bonarelli, et al. Phys. Lett. 112B, 102 (1982).Google Scholar
  29. 25.
    J. Bartelt, et al., Argonne Report, unpublished.Google Scholar
  30. 26.
    B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982).CrossRefGoogle Scholar
  31. 27.
    S. Dimopoulos, S. L. Glashow, E. M. Purcell, and F. Wilczek, Nature 298, 824 (1982).CrossRefGoogle Scholar
  32. 28.
    V. A. Rubakov, Nucl. Phys. B203, 311 (1982);CrossRefGoogle Scholar
  33. V. A. Rubakov, Zheft Pis’ma 33, 658 (1981).Google Scholar
  34. 29.
    C. G. Callan, Phys. Rev. D25, 2141 (1982);Google Scholar
  35. C. G. Callan, Phys. Rev. D26, 2058 (1982);Google Scholar
  36. C. G. Callan, Nucl. Phys. B204 (1982).Google Scholar
  37. 30.
    F. Wilczek, Phys. Rev. Lett. 48 1146 (1982).CrossRefGoogle Scholar
  38. 31.
    S. Errede, private communication.Google Scholar
  39. 32.
    E. W. Kolb, S. A. Colgate, and J. A. Harvey, Phys. Rev. Lett. 49, 1373 (1982).CrossRefGoogle Scholar
  40. 33.
    S. Dimopoulos, J. P. Preskill, and F. Wilczek, Phys. Lett. B.Google Scholar
  41. 34.
    D. Q. Lamb, F. K. Lamb, and D. Pines, Nature 246, 52 (1973);CrossRefGoogle Scholar
  42. J. G. Hills, Ap. J. 219 (1978)Google Scholar
  43. J. G. Hills, Ap. J. 240, 242 (1980).CrossRefGoogle Scholar
  44. 35.
    F. S. Cordova, K. O. Mason, and J. E. Nelson, Ap. J. 245, 609 (1981);CrossRefGoogle Scholar
  45. G. A. Reichert, K. O. Mason, J. R. Thorstensen, and S. Bowyer, to be published.Google Scholar
  46. 36.
    K. A. Van Riper and D. Q. Lamb, Ap. J. 244, L13 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Edward W. Kolb
    • 1
  1. 1.Theoretical DivisionLos Alamos National LabratoryLos AlamosUSA

Personalised recommendations