Advertisement

Heavy Flavor Production

  • Edmond L. Berger
Part of the NATO ASI Series book series (NSSB, volume 197)

Abstract

Discovery and exploration of the properties of new particles including heavy quarks is a principal goal of high energy investigations being carried out at both fixed target and collider energies. The specification of reliable cross sections for heavy quarks, including their production spectra in longitudinal and transverse momentum, and comparisons with data test the quantum chromodynamic (QCD) mechanisms by which all heavy objects are expected to be produced. Strategies in the search for new flavors such as top are predicated on best estimates of cross sections and of momentum distributions in phase space not only of the new flavor but, perhaps more importantly, of lighter flavors which contribute deceptive backgrounds. Those considering hadronic experiments to establish flavor-antiflavor mixing and possible CP violation require a detailed understanding of expected production spectra and momentum correlations.

Keywords

Transverse Momentum Heavy Quark Quantum Chromo Dynamic Charm Quark Parton Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. T. Goshaw, “Charm Production from 400 and 800 GeV/c Proton-Proton Collisions”, these proceedings.Google Scholar
  2. 2.
    N. R. Stanton, “Charm and Beauty Decays Via Hadronic Production in a Hybrid Emulsion Spectrometer (Fermilab E653)”, these proceedings.Google Scholar
  3. 3.
    S. Conetti, “Dimuon Experiments at the Fermilab High Intensity Laboratory”, these proceedings.Google Scholar
  4. 4.
    G. Poulard, “Experimental Study of BB Hadroproduction in the WA75 and WA78 ExpPri:nents”, these proceedings.Google Scholar
  5. 5.
    J. A. Appel, “QCD: Photo/Hadroproduction of Heavy Flavors; Fermilab E691, E769 and Beyond”, these proceedings.Google Scholar
  6. 6.
    K. Miyake, “Production of Particles with High Transverse Momenta in 800 GeV/c Proton-Nucleus Collisions, E605-FNAL”, these proceedings.Google Scholar
  7. 7.
    D. Treille, “Charm Photoproduction and Lifetimes from the NA 14/2 Experiment”, these proceedings.Google Scholar
  8. 8.
    N. Ellis, “Heavy-Flavor Production in UA1”, these proceedings.Google Scholar
  9. 9.
    D. E. Soper, “Heavy Quark Production in Hadron Collisions”, these proceedings.Google Scholar
  10. 10.
    R. K. Ellis, “Heavy Quark Production in QCD”, these proceedings.Google Scholar
  11. 11.
    J. D. Bjorken, “QCD: Hard Collisions are Easy and Soft Collisions are Hard”, these proceedings.Google Scholar
  12. 12.
    A. H. Mueller, “Hard Processes in QCD”, these proceedings.Google Scholar
  13. 13.
    P. Nason, S. Dawson, and R. K. Ellis, Fermilab report FERMILAB-Pub-87/222T (Dec. 87), to be published in Nucl. Phys. B.Google Scholar
  14. 14.
    E.L. Berger, Nucl. Phys. B (Proc. Suppl.)1B: 425 (1988).Google Scholar
  15. 15.
    E. L. Berger, “Benchmark Cross Sections for Bottom Quark Production”, Argonne report ANL-HEP-CP-87–121, Proceedings of the Fermilab Workshop on High Sensitivity Beauty Physics, Nov., 1987.Google Scholar
  16. 16.
    E. L. Berger, in Hadrons, Quarks, and Gluons, Proceedings of the XXII Rencontre de Moriond, Les Arcs, France, edited by J. Tran Thanh Van ( Editions Frontières, France, 1987 ) pp. 3–40.Google Scholar
  17. 17.
    R. K. Ellis and C. Quigg, Fermilab report FN-445/2013. 000 (1987).Google Scholar
  18. 18.
    M. Aguilar-Benitez et al.,Phys. Lett. 135B: 237 (1984), 189B: 476 (1987), and Z. Phys. C. to be published.Google Scholar
  19. 19.
    R Ammar et al., Phys. Lett. 183B: 110 (1987).ADSGoogle Scholar
  20. 20.
    D. W. Duke and J. F. Owens, Phys. Rev. D30: 49 (1984).ADSGoogle Scholar
  21. 21.
    A. D. Martin, R. G. Roberts, and W. J. Stirling, Phys. Rev. D37: 1161 (1988).ADSGoogle Scholar
  22. 22.
    J. F. Owens, Phys. Rev. D30: 943 (1984).ADSGoogle Scholar
  23. M. Aguilar-Benitez et al., Z. Phys. C31: 491 (1986).ADSGoogle Scholar
  24. 24.
    S. J. Brodsky, J. F. Gunion, and D. E. Soper, Phys. Rev. D36: 2710 (1987).ADSGoogle Scholar
  25. 25.
    H. Cobbaert et al., CERN report CERN-EP/88–34 (March, 1988), submitted to Phys. Lett. B.Google Scholar
  26. H. Cobbaert et al., Phys. Lett. B191: 456 (1987).ADSGoogle Scholar
  27. M. E. Duffy et al., Phys. Rev. Lett. 55: 1816 (1985).ADSCrossRefGoogle Scholar
  28. J. Ashman et al., Phys. Lett. B202: 603 (1988).ADSGoogle Scholar
  29. 29.
    E. L. Berger and J. Qiu, Phys. Lett. B206: 141 (1988).CrossRefGoogle Scholar
  30. 30.
    L. F. Abbott, E. L. Berger, R. Blankenbecler, and G. L. Kane, Phys. Lett. 88B: 157 (1979);CrossRefGoogle Scholar
  31. L. F. Abbott, W. B. Atwood, and R. M. Barnett, Phys. Rev. D22: 582 (1980).ADSCrossRefGoogle Scholar
  32. M. G. Catanesi et al., Phys. Lett. 187B: 431 (1987).ADSGoogle Scholar
  33. 32.
    E. L. Berger, Phys. Rev. D37: 1810 (1988).ADSGoogle Scholar
  34. 33.
    P. Bordalo et al.,CERN report CERN-EP/88–39 (March, 1988), submitted to Z. Phys. C.Google Scholar
  35. 34.
    E. Eichten, I. Hinchiiffe, K. Lane, and C. Quigg, Rev. Mod. Phys. 56: 579 (1984).ADSCrossRefGoogle Scholar
  36. C. Albajar et al., Phys. Lett. 186B: 247 (1987).Google Scholar
  37. 36.
    E. L. Berger, J. C. Collins, and D. E. Soper, Phys. Rev. D35: 2272 (1987).ADSGoogle Scholar
  38. 37.
    See also P. H. Garbincius, Fermilab report FERMILAB-Conf-88/39, Proceedings of the Workshop on High Sensitivity Beauty Physics at Fermilab, Nov., 1987.Google Scholar
  39. 38.
    E. L. Berger, J. C. Collins, D. Soper, and G. Sterman Nucl. Phys. B286: 704 (1987).ADSCrossRefGoogle Scholar
  40. 39.
    K. Eggert, UA1 Collaboration, private communications.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Edmond L. Berger
    • 1
  1. 1.High Energy Physics DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations