Dimuon Experiments at the Fermilab High Intensity Laboratory

  • Sergio Conetti
Part of the NATO ASI Series book series (NSSB, volume 197)


Over the last ten years, the High Intensity Area located at the Fermilab Proton-West beam has seen the development of a powerful large aperture spectrometer, utilised to study several aspects of the hard interactions of hadrons. The detector was first employed1 to investigate the production of Drell-Yan high mass states as well as some properties of the hadronic production of J/ψ. This first experiment was performed in a “close geometry”, where only the muons from the reaction under study were detected; as a natural continuation,2 the study of virtual, “Drell-Yan” photons was extended to the measurement of real photons directly produced in hard parton-parton interactions. The investigation of the hadronic production of a bound state of heavy quarks was pursued in more detail by studying the production of charmonium χ states. Finally, the future plans for the FNAL P-West detector foresee3 an extensive study of the production and decay of particles carrying the b-quark, detected via the presence of one or more muons with large transverse momentum. Apart from the direct photon measurement, whose detailed description appears in another contribution to these Proceedings4, an essential element of all the other experiments is the dimuon trigger, developed over the course of the experiments to provide a three-level event selection. Before presenting more detailed performances and results from the various experiments, we will discuss the basic features of the dimuon trigger, since it plays a major role in the actual execution of the measurements.


Soft Gluon Hadronic Production Colour Singlet Charmonium State Triple Coincidence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fermilab Experiment 537, Athens-Fermilab-McGill-Michigan-Shandong collaborationGoogle Scholar
  2. 2.
    Fermilab Experiment 705, Arizona-Athens-Duke-Fermilab-Florence- Florida A&MMcGill-Northwestern-Shandong collaborationGoogle Scholar
  3. 3.
    Fermilab Experiment 771, Arizona-Athens-Berkeley-Duke-Fermilab-Lecce- McGillNanking-Northwestern-Pavia-Pennsylvania-Prairie View A & M-Shandong collaborationGoogle Scholar
  4. 4.
    D.E. Wagoner et al., these proceedingsGoogle Scholar
  5. 5.
    . E. Anassontzis et al., Nucl. Instr. and Methods A242, 215 (1986)ADSGoogle Scholar
  6. 6.
    . H.U. Bengsston and T. Sjostrand, Lund preprint LU-TP-87-3 (1987)Google Scholar
  7. 7.
    . H. Areti et al., Nucl. Instr. and Methods 212, 135 (1983)CrossRefGoogle Scholar
  8. 8.
    S. Conetti and K. Kuchela, IEEE Trans. Nucl. Sc., NS-32, 1318 (1985)Google Scholar
  9. 9.
    S. Conetti, M.Haire and K. Kuchela, IEEE Trans. Nucl. Sc., NS-32, 1326 (1985)Google Scholar
  10. 10.
    I. Gaines et al., Fermilab Conf. 87 /21 (1987)Google Scholar
  11. 11.
    See also S. Katsanevas et al., Fermilab Pub 87/57-E, submitted to Phys. Rev. Lett.Google Scholar
  12. 12.
    E. Anassontzis et al., Phys Rev. Lett. 54, 2572 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    See also F. Close, these proceedingsGoogle Scholar
  14. 14.
    J. Badier et al., Z. Phys. C20, 101 (1983)ADSGoogle Scholar
  15. 15.
    J. Qiu, Nucl. Phys. B291, 746 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    B.Z. Kopeliovich and F. Niedermayer, JINR-E2-84-834, Dubna (1984). See also A. Mueller, these proceedings.Google Scholar
  17. 17.
    S.D. Ellis, M.B. Einhorn and C. Quigg, Phys. Rev. Lett. 36, 1263 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    C.E. Carlson and R. Suaya, Phys. Rev. D18, 760 (1978)ADSGoogle Scholar
  19. 19.
    T.B.W. Kirk et al.,Phys. Rev. Lett. 42, 619 (1979).ADSCrossRefGoogle Scholar
  20. C. Kourkoumelis et al., Phys. Lett. 81B, 405 (1979)ADSGoogle Scholar
  21. 20.
    . J.H. Kuhn, Phys. Lett. 89B, 385 (1980)ADSGoogle Scholar
  22. 21.
    E.N. Argyres and C.S. Lam, Phys. Rev. D21, 143 (1980)ADSGoogle Scholar
  23. B.L. loffe, Phys. Rev. Lett. 39, 1589 (1977)ADSCrossRefGoogle Scholar
  24. 22.
    R. Baier and R. Ruckl, Phys. Lett. 102B, 364 (1981)ADSGoogle Scholar
  25. R. Baier and R. Ruckl, Nucl. Phys. B208, 381 (1982)ADSCrossRefGoogle Scholar
  26. 23.
    R. Baier and R. Ruckl, Zeit. Phys. C19, 251 (1983)ADSGoogle Scholar
  27. 24.
    . L. Clavelli, P.H. Cox, B. Harms and S.Jones, Phys Rev. D32, 612 (1985)ADSGoogle Scholar
  28. 25.
    . H. Fritsch, Phys. Lett. 67B, 217 (1976)ADSGoogle Scholar
  29. 26.
    . M. Gluck, J.F. Owens and E. Reya, Phys. Rev. D17, 2324 (1978)ADSGoogle Scholar
  30. 27.
    . Y. Afek, C. Leroy and B. Margolis, Phys. Rev. D22, 86 (1980)ADSGoogle Scholar
  31. 28.
    M. Gluck and E. Reya, Phys. Lett. 79B, 453 (1978)ADSGoogle Scholar
  32. 29.
    Z. Kunst, E. Pietarinen and E. Reya, Phys. Rev. D21, 733 (1980)ADSGoogle Scholar
  33. 30.
    P. Chiappetta and P. Mery, Phys. Rev. D32, 2337 (1985)ADSGoogle Scholar
  34. 31.
    Y. Lemoigne et al., Phys. Lett. 113B, 508 (1982)ADSGoogle Scholar
  35. 32.
    S.R. Hahn et al., Phys. Rev. D30, 671 (1984)ADSGoogle Scholar
  36. 33.
    CERN proposal WAll, SPSC 76–3 and D. Potter et al., Fermilab proposal P-471Google Scholar
  37. 34.
    J. Appel, these proceedingsGoogle Scholar
  38. 35.
    E.L. Berger, these proceedingsGoogle Scholar
  39. 36.
    G. Poulard, these proceedingsGoogle Scholar
  40. 37.
    H. Albrecht et al., Phys. Lett. 162B, 395 (1985)ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Sergio Conetti
    • 1
  1. 1.Institute for Particle Physics and McGill UniversityMontrealCanada

Personalised recommendations