QCD: Hard Collisions are Easy and Soft Collisions are Hard

  • James D. Bjorken
Part of the NATO ASI Series book series (NSSB, volume 197)


Now, are hard collisions really all that easy? To be sure, calculation (not to mention measurement) of hard-collision processes is far from simple, and I mean no disrespect by the title. It is meant in the physicists’ sense that “what is possible to do is easy; the impossible is merely hard.”


Nuclear Matter Hard Process Parton Model Hard Collision Soft Collision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bjorken and S. Drell, “Relativistic Quantum Fields”, McGraw-Hill (New York, 1965 ).Google Scholar
  2. 2.
    See J. Bjorken, Proceedings of the 1979 SLAC Summer Institute on Particle Physics, ed. A. Mosher, SLAG Report SLAC-224(1980), p.219.Google Scholar
  3. 3.
    T. Sloan, CERN preprint CERN-EP/87–188(October, 1987 ).Google Scholar
  4. 4.
    J. Bjorken, Phys. Rev. 148, 1467 (1966).Google Scholar
  5. 5.
    J. Ellis and R. Jaffe, Phys. Rev. D9, 1444 (1974).Google Scholar
  6. 6.
    F. Close, these proceedings.Google Scholar
  7. 7.
    S. Brodsky, J. Ellis, and M. Karliner, SLAC-PUB-4519(Jan. 1988), present an interesting new interpretation of these data.Google Scholar
  8. 8.
    See G. Bodwin, Phys. Rev. D31, 2616(1985) and references therein.Google Scholar
  9. 9.
    See for example S. Brodsky, Acta Physica Polonica B15, 1059(1984) and references therein.Google Scholar
  10. 10.
    I believe that in modern language this inconsistency has to do with the presence of vacuum-to-vacuum bubbles in the evolution matrix U(t), but I am not sure on this point. Infinite renormalization constants also complicate the issue.Google Scholar
  11. 11.
    Actually, a better estimate is E/Am2, where Am2 = m2 - m2 is the mass (squared) splitting between the pion and tfie next important massive state x. I thank M. Strikman for this comment.Google Scholar
  12. 12.
    See for example the contributions of G. Marchesini, of T. Gottschalk, of F. Paige and S. Protopopescu, and of H. Bengtsson, Proceedings of the UCLA Workshop “Observable Standard Model Physics at the SSC: Monte Carlo Simulation and Detector Capabilities,” ed. H. V. Bengtsson, C. Buchanan, T. Gottschalk, and A. Soni, World Scientific(Singapore ), 1986.Google Scholar
  13. 13.
    W. Hofmann, Proceedings of the XXIII International Conference on High Energy Physics, Berkeley, CA, July, 1986, ed. S. Loken, World Scientific(Singapore), 1987, Vol. II, p. 1093.Google Scholar
  14. 14.
    Y. Azimov, Y. Dokshitzer, V. Khose, and S. Troyan, Phys. Lett. 165B, 147(1985); Yad. Fiz. 43, 149(1986) and references 1177.6in.Google Scholar
  15. 15.
    S. Parke and T. Taylor, Phys. Lett. 157B, 81 (1985).Google Scholar
  16. 16.
    N. Nikolaev and V. Zakharov, Phys. Lett. 55B, 197 (1975).Google Scholar
  17. 17.
    J. Bjorken, in Particles and Detectors: Festschrift for Jack Steinberger, ed. K. Kleinknecht and T.D. Lee, Springer Tracts II, 108 ( Springer-Verlag, Berlin, 1986 ), p. 17.Google Scholar
  18. 18.
    For a nice discussion, see A. Bialas and I. Chinaj, Phys. Lett. 133B, 241 (1983).Google Scholar
  19. 19.
    S. Brodsky and G. Farrar, Phys. Rev. D11, 1309 (1975).Google Scholar
  20. 20.
    A. Mueller, Proceedings of the 27th Rencontre de Moriond on Perturbative QCD, ed. J. Tran Thaa. Van, Editions Frontieres, Gif-sur-Yvette(1987).Google Scholar
  21. 21.
    A. Carroll et. al., Penn State preprint PSU HEP/88–02.Google Scholar
  22. 22.
    G. Farrar, Phys. Rev. Letters 56, 1643(1986).The theoretical argument for banning polarization measurements is expressed in this paper: the full amplitude is A = C + D where C, the clean amplitude, is computable and D, the dirty amplitude, is not. D in magnitude is 30% of C so it only affects unpolarized data at the 10% level. Polarization data dependent on the interference term is dirty even though asymmetries up to 60% are possible.Google Scholar
  23. 23.
    See for example S. Brodsky and G. DeTeramond, SLAC preprint SLACPUB-4504, Dec, 1987.Google Scholar
  24. 24.
    Internal-target data from Fermilab show backward protons (xF - 0.8±0.1) about 7% polarized at pi, = 500 MeV; this polarization disappears at pT = 1 GeV. But what about higher pT? And what about pp -( n + x? See M. Corcoran et. al., Phys. Rev. D22, 2624(1980).Google Scholar
  25. 25.
    G. Ingelman and P. Schlein, Phys. Lett. 152B, 256 (1985).Google Scholar
  26. 26.
    An excellent analysis of the situation is presented by E. Berger, J. Collins, D. Soper, and G. Sterman, Nucl. Phys. B286, 704 (1987).Google Scholar
  27. 27.
    It can be done. See J. Bjorken, Forward Spectrometers at the SSC, FERMILAB-CONF-86/22.Google Scholar
  28. 28.
    For color singlet initial-state partons, the existence of a rapidity gap is very credible; an example is W+W -( H° as discussed by Y. Dokshitzer, V. Khose, and S. Troyan, Proceedings of the 6th International Conference on Physics in Collision, ed. M. Derrick, World Scientific(Singapore), 1987, p. 417.Google Scholar
  29. 29.
    K. Ellis and C. Quigg, Fermilab Report, FN-445, Jan. 1987, and these proceedings.E. Berger, Proceedings of the 22nd Rencontre de Moriond, March 1987, and these proceedings.Google Scholar
  30. 30.
    P. Coteus et. al., Phys. Rev. Letters 59, 1530 (1987).ADSCrossRefGoogle Scholar
  31. 31.
    J. Bjorken, L. Frankfurt, and M. Strikman, “Hadronization of Heavy Quarks,” in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • James D. Bjorken
    • 1
  1. 1.Fermi National Accelerator LaboratoryBataviaUSA

Personalised recommendations