Advertisement

On the Historical Development of the Indistinguishability Concept for Microparticles

  • Alfred Kastler

Abstract

The kinetic theory of gases, founded in the 18th century by Daniel Bernoulli, was further developed during the 19th century by Clausius and Maxwell, and crowned by the achievements of Ludwig Boltzmann’s statistical mechanics. At the time Boltzmann was developing his method, the hypothesis of the discontinuous structure of matter, i.e., of the existence of atoms and molecules, was becoming increasingly a matter of certainty for physicists. Boltzmann’s colleague at the University of Vienna, Joseph Loschmidt, indicated in the year 1865 a method for determining the number of molecules in a mole (the so-called Avogadro’s number NA) and the order of magnitude of atomic sizes (1 Å = 10-8 cm). We know today that Avogadro’s number— determined by a dozen independent methods—has the numerical value NA = 6.025 × 1023, an enormously large number.

Keywords

Standing Wave Velocity Space Indistinguishability Concept Discontinuous Structure Velocity Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    A. Einstein, Sitzungsber. Preuss. Akad. Wiss. (1925), p. 3.Google Scholar
  2. 2.
    A. Sommerfield, Vorlesungen über Theoretische Physik ,Vol. 5 (Akademische Verlagsgesellschaft, Leipzig, 1952), Sec. 29c, p. 209.Google Scholar
  3. 3.
    M. Planck, Vorlesungen über die Theorie der Wärmestrahlung ,(Barth, Leipzig, 1906), Sec. 149, p. 154.Google Scholar
  4. 4.
    M. Planck, Physikalische Abhandlungen und Vorträge ,Vol. I (Vieweg, Braunschweig, 1958), p. 154.Google Scholar
  5. 5.
    Lord Rayleigh, Phil. Mag. 49, 539 (1900)Google Scholar
  6. 5a.
    Lord Rayleigh, reproduced in Scientific Papers ,Vol. IV (Cambridge University Press, Cambridge, 1892–1901), p. 483.Google Scholar
  7. 5b.
    Lord Rayleigh, Scientific Papers ,Vol. V (Cambridge University Press, Cambridge, 1902–1910), p. 248.Google Scholar
  8. 6.
    L. Boltzmann, Wissenschaftliche Abhandlungen ,Vol. III (Chelsea Publishing Co., New York, 1968), p. 618.Google Scholar
  9. 7.
    M. Planck, Ann. Phys. (Leipzig) 4, 553 (1901)Google Scholar
  10. 7a.
    M. Planck, Physikalische Abhandlungen und Vorträge ,Vol. I (Vieweg, Braunschweig, 1958), p. 698.Google Scholar
  11. 8.
    M. Planck, Ann. Phys. (Leipzig) 9, 629 (1902)Google Scholar
  12. 8a.
    M. Planck, Physikalische Abhandlungen und Vorträge ,Vol. I (Vieweg, Braunschweig, 1958), p. 731.Google Scholar
  13. 9.
    L. Natanson, Phys. Z. 12, 659 (1911).Google Scholar
  14. 10.
    A. Einstein, Phys. Z. 10, 185 (1901).Google Scholar
  15. 11.
    A. Einstein, Ann. Phys. (Leipzig) 17, 132 (1905).Google Scholar
  16. 12.
    A. Einstein, Ann. Phys. (Leipzig) 22, 180 (1907).Google Scholar
  17. 13.
    A. Einstein, Phys. Z. 10, 185, 817 (1909).Google Scholar
  18. 14.
    A. Einstein, Z. Phys. 19, 301 (1917).Google Scholar
  19. 15.
    P. Debye, Ann. Phys. (Leipzig) 33, 1427 (1910).Google Scholar
  20. 16.
    Einstein: A Centenary Volume ,A. P. French, ed. (Heinemann, London, 1979), p. 94.Google Scholar
  21. 17.
    S. W. Bose, Z. Phys. 26, 178 (1924).CrossRefGoogle Scholar
  22. 18.
    A. Einstein, Sitzungsber. Preuss. Akad. Wiss. (1924), p. 281; and (1925), pp. 8 and 18.Google Scholar
  23. 19.
    P. Dirac, Proc. R. Soc. London 112, 661 (1926).CrossRefGoogle Scholar
  24. 20.
    A. Sommerfield, Vorlesungen über Theoretische Physik ,Vol. 5 (Akademische Verlagsgesellschaft, Leipzig, 1952), pp. 273–274.Google Scholar
  25. 21.
    B. Decomps and A. Kastler, C. R. Acad. Sci. 257, 1087 (1963).Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Alfred Kastler
    • 1
  1. 1.Université ParisParis VIFrance

Personalised recommendations