Transphyletic Animal Similarities and Predictive Toxicology

  • Jay Boyd Best


Several years ago, I published an article entitled “The Evolution and Organization of Sentient Biological Behavior Systems” in one of the books edited by Wolfgang Yourgrau.1 In that article, I presented the rudiments of a theory to account for the “higher behaviors” that I had observed in the primitive flatworm, planaria. Although a variety of subsequent evidence, in addition to that which was available to me at the time, has lent further support for it and I am even more convinced now than then of its essential correctness, it was, I realize with hindsight, a pretty wild theory relative to the prevailing views of the time. Wolfgang exhibited a great deal of courage in acting as editorial midwife for its delivery. In his other role as “pediatrician” of ideas, I hope that he would not be displeased with this sequel describing the further growth of “the child.”


Freshwater Planarian Predictive Toxicology Methyl Mercury Chloride Methylmercuric Chloride Stern Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    A. D. Breck and W. Yourgrau, Biology, History, and Natural Philosophy (Plenum Press, New York, 1972).Google Scholar
  2. 2.
    G. S. Fraenkel and D. L. Gunn, The Orientation of Animals (Reprinting of 1940 edition by Dover Publ., Inc., New York, 1961).Google Scholar
  3. 3.
    J. Loeb, Forced Movements, Tropisms and Animal Conduct (Reprinting of 1918 edition by Dover Publ. Inc., New York, 1973).Google Scholar
  4. 4.
    J. B. Best and I. Rubenstein, “Maze Learning and Associated Behavior in Planaria,” J. Comp. Physiol. Psychol. 55, 560–566 (1962).CrossRefGoogle Scholar
  5. 5.
    J. B. Best and I. Rubenstein, “Environmental Familiarity and Feeding in a Planarian,” Science 135, 916–918 (1962).CrossRefGoogle Scholar
  6. 6.
    J. B. Best, “Protopsychology,” Scientific American 54–62 (1963).Google Scholar
  7. 7.
    H. Koopowitz, “Feeding Behavior and the Role of the Brain in the Polyclad Flatworm, Pianocera gikhristi,” Anim. Behavior 18, 31–35 (1970).CrossRefGoogle Scholar
  8. 8.
    J. B. Best, “The Organization and Evolution of Sentient Biological Behavior Systems,” in Biology, History and Natural Philosophy ,A. D. Breck and W. Yourgrau, editors (Plenum Press, New York, 1972), pp. 37–78.CrossRefGoogle Scholar
  9. 9.
    J. B. Best, “Learning and Neurophysiology of Planarians: Transphyletic Similarities in the Organization of Brains and Psychological Behavior Systems,” in Behavioral Genetics: Simple Systems ,James Wilson, editor (Colorado University Press, Boulder, Colorado, 1973), pp. 55–84.Google Scholar
  10. 10.
    G. L. Stebbins, “The Evolutionary Significance of Biological Templates,” in Biology, History and Natural Philosophy ,eds. A. D. Breck and W. Yourgrau, editors (Plenum Press, New York, 1972).Google Scholar
  11. 11.
    L. Hyman, The invertebrates: Platyhelminths and Rhynchocoela ,Vol. 2 (McGraw-Hill, New York, 1951).Google Scholar
  12. 12.
    M. Morita and J. B. Best, “Electron Microscopic Studies of Planaria. II. Fine Structure of the Neurosecretory System in the Planarian Dugesia dowtocephala,” J. Ultrastructure Res. 13, 396–408 (1965).CrossRefGoogle Scholar
  13. 13.
    K. J. Pedersen, “Slime-Secreting Cells of Planarians,” Ann. N. Y. Acad. Sci. 106, 424–442 (1963).CrossRefGoogle Scholar
  14. 14.
    E. Wolff, “Recent Researches on Regeneration of Planaria,” in Regeneration ,D. Rudnick, editor (The Ronald Press Co., New York, 1962), pp. 53–84.Google Scholar
  15. 15.
    E. Wolff and F. Dubois, “Sur une method d’irradiation localisee permittant de mettre en evidence la migration des cellules de regeneration chez les planaires,” C. R. Soc. Biol. 141, 903–906 (1947).Google Scholar
  16. 16.
    E. Wolff and F. Dubois, “Sur la migration des cellules de regeneration chez les planaires,” Rev. Suisse Zool. 55, 218–227 (1948).Google Scholar
  17. 17.
    M. Morita and J. B. Best, “Electron Microscopic Studies of Planarian Regeneration. II. Changes in Epidermis During Regeneration,” J. Exp. Zool. 187, 345–374 (1974).CrossRefGoogle Scholar
  18. 18.
    M. Morita, J. B. Best, and J. Noel, “Electron Microscopic Studies of Planarian Regeneration. I. Fine Structure of Neoblasts in Dugesia dorotocephala.” J. Ultrastructure Res. 27, 7–23 (1969).CrossRefGoogle Scholar
  19. 19.
    K. Carpenter, M. Morita, and J. B. Best, “Ultrastructure of the Photoreceptor of the Planarian Dugesia dorotocephala. I. Normal Eye,” Cell Tissue Res. 148, 143–158 (1974a).CrossRefGoogle Scholar
  20. 20.
    K. Carpenter, M. Morita, and J. B. Best, “Ultrastructure of the Photoreceptor of the Planarian Dugesia dorotocephala. II. Changes Induced by Darkness and Light,” Cytobiologie 8, 320–338 (1974).Google Scholar
  21. 21.
    J. B. Best, S. Hand, and R. Rosenvold, “Mitosis in Normal and Regenerating Planarians,” J. Exp. Zool. 168, 157–168 (1968).CrossRefGoogle Scholar
  22. 22.
    J. B. Best, M. Morita, and J. Noel, “Fine Structure and Function of Planarian Goblet Cells,” J. Ultrastructure Res. 24, 385–397 (1968).CrossRefGoogle Scholar
  23. 23.
    J. B. Best, A. B. Goodman, and A. Pigon, “Fissioning in Planaria: Control by the Brain,” Science 164, 565 (1969).CrossRefGoogle Scholar
  24. 24.
    J. B. Best, W. Howell, V. Riegel, and M. Abelein, “Cephalic Mechanism for the Social Control of Fissioning in Planarians. I. Nature of the Feedback Cue and Switching Characteristics,” J. Neurobiology 5, 421–442 (1974).CrossRefGoogle Scholar
  25. 25.
    J. B. Best, M. Abelein, E. Kreutzer, and A. Pigon, “Cephalic Mechanism for the Social Control of Fissioning in Planarians. III. CNS Centers of Facilitation and Inhibition,” J. Comp. Physiol. Psychol. 89, 923–932 (1975).CrossRefGoogle Scholar
  26. 26.
    W. J. Davis, “Neuronal Organization and Ontogeny in the Lobster Swimmeret System,” in Advances in Behavioral Biology ,Vol. 7: Contiol of Posture and Locomotion ,R. B. Smith, K. B. Pearson, R. S. Smith, and J. B. Redford, editors (Plenum Press, New York, 1974), pp. 437–455.Google Scholar
  27. 27.
    J. H. Welsh and L. D. Williams, “Monoamine Containing Neurons in a Planarian,” J. Comp. Neurology 138, 103–116 (1969).CrossRefGoogle Scholar
  28. 28.
    J. H. Welsþ and M. Moorhead, “The Quantitative Distribution of 5-hydroxytryptamine in the Invertebrates, Especially in their Nervous Systems,” J. Neurochemistry 6, 146–169 (1960).CrossRefGoogle Scholar
  29. 29.
    J. B. Best and J. Noel, “Complex Synaptic Configurations in Planarian Brain,” Science 164, 1070–1071 (1969).CrossRefGoogle Scholar
  30. 30.
    M. Morita and J. B. Best, “Electron Microscopic Studies of Planaria. III. Some Observations on the Fine Structure of Planarian Nervous Tissue,” J. Exp. Zool. 161, 391–411 (1966).CrossRefGoogle Scholar
  31. 31.
    J. H. Welsh and E. C. King, “Catecholamines in Planarians,” Comp. Biochem. Physiol. 36, 683–688 (1970).CrossRefGoogle Scholar
  32. 32.
    T. L. Lentz, Primitive Nervous Systems (Yale Univ. Press, New Haven, 1968).Google Scholar
  33. 33.
    T. H. Bullock and D. Nachmansohn, “Cholinesterase in Primitive Nervous Systems,” J. Cell Comp. Physiol. 20, 239–242 (1942).CrossRefGoogle Scholar
  34. 34.
    R. M. Eakin, “Lines of Evolution of Photoreceptors,” in General Physiology of Cell Specialization ,D. Mazia and A. Tyler, editors (McGraw-Hill Book Co., New York, 1963).Google Scholar
  35. 35.
    R. M. Eakin, “Evolution of Photoreceptors,” in Evolutionary Biology II ,T. Dobzhansky, M. K. Hecht, and W. C. Stene, editors (Appleton-Century-Crofts, New York, 1968).Google Scholar
  36. 36.
    E. K. MacRae, “Observations on the Fine Structure of the Photoreceptor Cells in the Planarian Dugesia tigrina,” J. Ultrastruc. Res. 10, 334–349 (1964).CrossRefGoogle Scholar
  37. 37.
    E. K. MacRae, “Fine Structure of Photoreceptors in a Marine Flatworm,” Z. Zellíorsch. 75, 469–484 (1966).CrossRefGoogle Scholar
  38. 38.
    Y. Kishida, “Electron Microscopy Studies on the Planarian Eye. I, II.” Sci. Rep. Kanazawa Univ. 12, 75–142 (1967).Google Scholar
  39. 39.
    F. H. Bronson, B. F. Eleftheriou, and H. E. Dezell, “Strange Male Pregnancy Block in Deermice: Prolactin and Adrenocortical Hormones,” Biol. Repiod. 1, 302–306 (1969).CrossRefGoogle Scholar
  40. 40.
    K. E. Dewhurst, D. J. El Kabir, G. W. Harris, and B. M. Mandelbrote, “A Review of the Effect of Stress on the Activity of the Central Nervous-Pituitary-Thyroid Axis in Animals and Man,” Confinia Neurologiea Separatum 30, 161–196 (1968).CrossRefGoogle Scholar
  41. 41.
    G. Giuliani, “Studies on Gonadotropin Release during Stressful Situations and the Role of the Central Nervous System,” in Physiology and Pathology of Adaptation Mechanisms ,E. Bajusz, editor (Pergamon Press, New York, 1969), pp. 293–309.Google Scholar
  42. 42.
    A. Pigon, M. Morita, and J. B. Best, “Cephalic Mechanism for the Social Control of Fissioning in Planarians. II. Localization and Identification of the Receptors by Electronmicrographic and Ablation Studies,” J. Neurohiol. 5, 443–462 (1974).CrossRefGoogle Scholar
  43. 43.
    H. M. Bruce, “An Exteroreceptive Block to Pregnancy in the Mouse,” Nature 184, 105 (1959).CrossRefGoogle Scholar
  44. 44.
    H. M. Bruce, “A Block to Pregnancy in the Mouse Caused by the Proximity of Strange Males,” J. Reprod. Feitil. 1, 96 (1960).CrossRefGoogle Scholar
  45. 45.
    H. M. Bruce, “Further Observations on Pregnancy Block in Mice Caused by the Proximity of Strange Males,” J. Reprod. Fertil. 1, 311 (1960).Google Scholar
  46. 46.
    H. M. Bruce, “Olfactory Block to Pregnancy among Grouped Mice,” J. Repwd. Fertil. 6, 451 (1963).CrossRefGoogle Scholar
  47. 47.
    H. M. Bruce, “Smell as an Exteroreceptive Factor,” J. Anim. Sci. 25 (Suppl.), 83 (1966).Google Scholar
  48. 48.
    H. M. Bruce, “Absence of Pregnancy Block in Mice when Stud and Test Male Belong to an Inbred Strain,” J. Reprod. Fertil. 17, 407 (1968).CrossRefGoogle Scholar
  49. 49.
    H. M. Bruce, “Continued Suppression of Luteotrophic Activity and Fertility in the Female Mouse,” J. Reprod. Fertil. 4, 313 (1962).CrossRefGoogle Scholar
  50. 50.
    H. M. Bruce and A. S. Parkes, “Hormonal Factors in Exteroreceptive Block to Pregnancy in Mice,” J. Endocrinol. 20, 29 (1960).Google Scholar
  51. 51.
    A. S. Parks, “The Role of Odorous Substances in Mammalian Reproduction,” J. Reprod. Fert. 1, 312 (1960).Google Scholar
  52. 52.
    A. S. Parks and H. M. Bruce, “Olfactory Stimuli in Mammalian Reproduction,” Science 134, 1049 (1961).CrossRefGoogle Scholar
  53. 53.
    T. L. Avery, “Phermone-Induced Changes in the Acidophil Concentration of Mouse Pituitary Glands,” Science 164, 423–424 (1969).CrossRefGoogle Scholar
  54. 54.
    J. A. Coppola, “Brain Catecholamines and Gonadotropin Secretion,” in Frontiers in Neuroendocrinology ,L. Martini and W. F. Ganong, editors (Oxford Univ. Press, London, 1971), Chap. 5.Google Scholar
  55. 55.
    W. F. Ganong, “Brain Amines and ACTH Secretion,” in Hormonal Steroids ,Proc. 3rd Inter. Congr. Hormonal Steroids, Hamburg, 7–12, Sept. 1970, V. H. T. James and L. Martini, editors (Excerpta Medica, Amsterdam, 1971), pp. 814–821.Google Scholar
  56. 56.
    K. Fuxe, T. Hokfeldt, and G. Jonsson, “The Effect of Gonadal Steroids on the Tubero-infundibular Dopamine Neurons,” in Hormonal Steroids ,V. H. T. James and L. Martini, editors (Excerpta Medica, Amsterdam, 1971), pp. 806–813.Google Scholar
  57. 57.
    F. Anton-Tay and R. J. Wurtman, “Brain Monoamines and Endocrine Function,” in Frontiers in Neuroendocrinology, L. Martini and W. F. Ganong, editors (Oxford Univ. Press, New York, 1971), pp. 45–66.Google Scholar
  58. 58.
    V. Dethier, “Microscopic Brains,” Science 10, 1138–1145 (1964).CrossRefGoogle Scholar
  59. 59.
    K. C. Highnam and L. Hill, The Comparative Endocrinology of the Invertebrates (American Elsevier Publ. Co., New York, 1969).Google Scholar
  60. 60.
    W. Loher, “The Chemical Acceleration of the Maturation Process and Its Hormonal Control in the Male and the Desert Locust,” Proc. R. Soc. London Ser. B 153, 380–397 (1960).CrossRefGoogle Scholar
  61. 61.
    L. H. Kleinholz, “Separation and Purification of Crustacean Eyestalk Hormones,” Am. ZooJ. 6, 161–167 (1966).Google Scholar
  62. 62.
    L. H. Kleinholz, F. Kimball, and M. McGarvey, “Initial Characterization and Separation of Hyperglycemic (Diabetogenic) Hormone from the Crustacean Eyestalk,” Gen. Comp. Endocrinol. 8, 75–81 (1967).CrossRefGoogle Scholar
  63. 63.
    A. A. Abramowitz, F. L. Hisaw, and D. N. Papandrea, “The Occurrence of a Diabetogenic Factor in the Eyestalks of Crustaceans,” Biol. Bull. 86, 1–5 (1944).CrossRefGoogle Scholar
  64. 64.
    R. Kenk, “Induction of Sexuality in the Asexual Form of Dugesia tigrina,” J. Exp. Zool. 87, 55–69 (1941).CrossRefGoogle Scholar
  65. 65.
    M. Grasso, “Esperimenti sul Controllo Study of Sexual Induction in the Asexual Agami di Planarie,” Boll. ZooJogia 38, 532 (1971).Google Scholar
  66. 66.
    Th. Lender, “The Role of Neurosecretion in Freshwater Planarians,” in Biology of the Turbellaria ,N. W. Riser and M. P. Morse, editors (McGraw-Hill, New York, 1974), pp. 460–475.Google Scholar
  67. 67.
    Th. Lender, “Endocrinologie des Planaires,” Bull. Soc. Zool. Fr. 105, 173–191 (1980).Google Scholar
  68. 68.
    B. Scharrer, “The Nuerosecretory Neuron in Neuroendocrine Regulatory Mechanisms,” Amer. Zool. 7, 161–169 (1967).Google Scholar
  69. 69.
    A. A. Bronstein and V. P. Ivanov, Zh. Evolyut. Biokhim. Fizol. 1, 251–261 (1965).Google Scholar
  70. 69a.
    Cited by Ya. A. Vinnikov in G. H. Bourne, editor, Structure and Function of Nervous Tissue ,Vol. II (Academic Press, New York, 1969).Google Scholar
  71. 70.
    Ya. A. Vinnikov, “The Ultrastructure and Cytochemical Bases of Function of the Sense Organ Receptors,” in The Structure and Function of Nervous Tissue ,G. H. Bourne, editor, Vol. II (Academic Press, New York, 1969).Google Scholar
  72. 71.
    A. Y. deLorenzo, “Electron Microscopic Observations of the Olfactory Mucosa and Olfactory Nerve,” J. Biophys. Biochem. Cytol 3, 839–848 (1957).CrossRefGoogle Scholar
  73. 72.
    J. Axelrod, “The Pineal Gland: A Ncurochemical Transducer,” Science 184, 1341–1348 (1974).CrossRefGoogle Scholar
  74. 73.
    S. Brinkley, S. E. MacBride, D. C. Klein, and C. L. Ralph, “Pineal Enzymes: Regulation of Avian Melatonin Synthesis,” Science 181, 273–275 (1973).CrossRefGoogle Scholar
  75. 74.
    G. Brown, L. Grota, G. Bubenik, L. Niles, and H. Tsui, “Physiologic Regulation of Melatonin,” in Melatonin: Current Status and Perspectives ,N. Birau and W. Schloat, editors (Pergamon Press, New York, pp. 95–112 (1981).Google Scholar
  76. 75.
    M. Morita (personal communication).Google Scholar
  77. 76.
    C. Vowinckel and J. R. Marsden, “Reproduction of Dugesia tigrina under Short-Day and Long-Day Conditions at Different Temperatures,” J. Emhryol. Exp. Morph. 26, 587–609 (1971).Google Scholar
  78. 77.
    S. Rude, “Catecholamines in the Ventral Nerve Cord of Lumbricus terrestris,” Comp. Biochem. Physioi. 28, 747–752 (1969).CrossRefGoogle Scholar
  79. 78.
    S. Rude, “Monoamine-Containing Neurons in the Nerve Cord and Body Wall of Lumbricus terrestris” J. Comp. Neurol. 128, 397–412 (1966).CrossRefGoogle Scholar
  80. 79.
    D. C. Sweeney, “Dopamine: Its Occurrence in Molluscan Ganglia,” Science 139, 1051 (1963).CrossRefGoogle Scholar
  81. 80.
    D. C. Sweeney, “The Anatomical Distribution of Monoamines in a Fresh-Water Luvalve Mollusc, Sphaerium sulcatum (L),” Comp. Biochem. Physioi. 25, 601–614 (1968).CrossRefGoogle Scholar
  82. 81.
    J. B. Best (unpublished results).Google Scholar
  83. 82.
    J. Alumets, R. Hakanson, F. Sundler, and J. Thoreil, “Neuronal localization of Immunoreactive Enkephalin and ß-endorphin in the Earthworm,” Nature 279, 805–806 (1979).CrossRefGoogle Scholar
  84. 83.
    J. B. Best and M. Morita (unpublished results).Google Scholar
  85. 84.
    M. Morita, “Electron Microscopic Studies of Planaria. I. Fine Structure of the Muscle Fiber in the Head of the Planarian, Dugesia dorotocephala,” J. Ultrastructure Res. 13, 383–395 (1965).CrossRefGoogle Scholar
  86. 85.
    H. Koopowitz and D. W. Ewer, “Observations on the Myo-neural Physiology of a Polyclad Flatworm: Inhibitory Systems,” J. Exp. Biol. 53, 1–8 (1970).Google Scholar
  87. 86.
    L. Keenan and H. Koopowitz, “Tetrodotoxin Sensitive Action Potentials from the Brain of the Polyclad Flatworm, Notoplana actioia,” J. Exp. Zool. 215, 209–213 (1981).CrossRefGoogle Scholar
  88. 87.
    T. Narahashi, J. W. Moore, and W. R. Scott, “Tetrodotoxin Blockage of Sodium and Conductance Increase in Lobster Giant Axons,” J. Gen. Physioi. 47, 965–974 (1964).CrossRefGoogle Scholar
  89. 88.
    T. Narahashi, “Chemicals as Tools in the Study of Excitable Membranes,” Physioi. Rev. 54, 813–889 (1974).Google Scholar
  90. 89.
    P. A. V. Anderson, “Ionic Basis of Action Potentials and Bursting Activity in the Hydromedusan Jellyfish, Polyorchis penicillatus” J. Exp. Biol. 78, 299–302 (1979).Google Scholar
  91. 90.
    Y. Saimi and C. Kung, personal communication cited by L. Keenan and H. Koopowitz: Tetrodotoxin sensitive action potentials from the brain of the polyclad flatworm, Notoplana actiolo. J. Exp. Zool. 215, 209–213 (1981).CrossRefGoogle Scholar
  92. 91.
    F. Dubois and E. Wolff, “Sur une methode dirradiation localisee (45) permettant de mettre en evidence la migration des cellules de regeneration chez les planaires,” Compt. Rend. Soc. Biol. 141, 903–906 (1947).Google Scholar
  93. 92.
    F. Dubois, “Demonstration de la migration des cellules de regeneration des Planaires par la methode des greffes et des irradiations combinees,” C. R. Acad. Sci. 226, 1316 (1948).Google Scholar
  94. 93.
    F. Dubois, “Contribution a letude de la migration des cellules de regeneration chez les Planaires dulcicoles,” Bull. Biol. France Belg. 83, 213 (1949).Google Scholar
  95. 94.
    T. Lender, “Factors in Morphogenesis of Regenerating Freshwater Planaria,” in M. Abercrombie and J. Bracket, editors, Advances in Morphogenesis ,Vol. 2, p. 305 (Academic Press, New York, 1962).Google Scholar
  96. 95.
    T. Betchaku, “Isolation of Planarian Neoblasts and their Behavior in vitro with Some Aspects of the Mechanism of Formation of the Regeneration Blastema,” J. Exp. Zool. 164, 407 (1967).CrossRefGoogle Scholar
  97. 96.
    M. Morita and J. B. Best (unpublished results).Google Scholar
  98. 97.
    C. S. Lange, “An Outline of Studies on the Cellular Basis of Planarian Radiation Lethality,” J. Physiol. (London) 197, 54–55 (1968).Google Scholar
  99. 98.
    C. S. Lange, “Studies on the Cellular Basis of Radiation Lethality. I. The Pattern of Mortality in the Whole-Body Irradiated Planarian (Tricladia paludicola),” Int. J. Radiat. Biol. 13, 511–530 (1968).CrossRefGoogle Scholar
  100. 99.
    C. S. Lange, “Studies on the Cellular Basis of Radiation Lethality. II. Survival-Curve Parameters for Standardized Planarian Populations,” Int. J. Radiat. Biol. 14, 119–132 (1968).CrossRefGoogle Scholar
  101. 100.
    C. S. Lange, “Studies on the Cellular Basis of Radiation Lethality. IV. Confirmation of the Validity of the Model and the Effects of Dose Fractionation,” Int. J. Radiat Biol. 14, 539–551 (1969).CrossRefGoogle Scholar
  102. 101.
    C. S. Lange, “Studies on the Cellular Basis of Planarian Radiation Lethality. V. A Survival Curve for the Reproductive Integrity of the Planarian Neoblast and the Effect of Polyploidy on the Radiation Response,” Int. J. Radiat. Biol. 15, 51–64 (1969).CrossRefGoogle Scholar
  103. 102.
    C. S. Lange and C. W. Gilbert, “Studies on the Cellular Basis of Radiation Lethality. III. The Measurement of Stem Cell Repopulation Probability,” Int. J. Radiat. Biol. 14, 373–388 (1968).CrossRefGoogle Scholar
  104. 103.
    J. P. Trinkhaus, Cells into Organs (Prentice Hall, Englewood Cliffs, New Jersey, 1969).Google Scholar
  105. 104.
    J. P. Trinkhaus and T. L. Lentz, “Direct Observation of Type Specific Segregation in Mixed Cell Aggregates,” Develop. Biol. 9, 11–136 (1964).Google Scholar
  106. 105.
    A. A. Moscona, “Analysis of Cell Combinations in Experimental Synthesis of Tissues in vitro,” J. Cell. Comp. Physiol. 60 (Suppl. 1), 65–80 (1962).CrossRefGoogle Scholar
  107. 106.
    A. A. Moscona, “Development in vitro of Chimaeric Aggregates of Dissociated Embryonic Chick and Mouse Cells,” Proc. Natl. Acad. Sci. U.S. 43, 184–144 (1957).CrossRefGoogle Scholar
  108. 107.
    M. S. Steinberg, “Reconstruction of Tissues by Dissociated Cells,” Science 141, 401–408 (1963).CrossRefGoogle Scholar
  109. 108.
    P. Handler, Dedication address, Northwestern Univ. Cancer Center, May 18 (1979).Google Scholar
  110. 109.
    J. T. MacGregor (personal communication).Google Scholar
  111. 110.
    U. S. Congress, Federal Food ,Drug and Cosmetic Act as Amended (U. S. Government Printing Office, Washington, D.C., August, 1972.Google Scholar
  112. 111.
    Harvard Medical School Health Newsletter (1979).Google Scholar
  113. 112.
    M. Holstein, J. McCann, F. A. Angelosanto, and W. W. Nichols, “Short Term Tests for Carcinogens and Mutagens,” Mutation Res. 65, 133–226 (1979).CrossRefGoogle Scholar
  114. 113.
    Wall Street Journal, page 1, September 4, 1980.Google Scholar
  115. 114.
    F. Huneeus-Cox, H. L. Fernandez, and B. H. Smith, “Effects of Redox and Sulfhydryl Reagents on the Bioelectric Properties of the Giant Axon of the Squid,” Biophys. J. 6, 675–689 (1966).CrossRefGoogle Scholar
  116. 115.
    D. S. Farrier, R. E. Poulson, Q. D. Skinner, J. C. Adams, and J. Bower, “Aquisition, Processing and Storage for Environmental Research of Aqueous Effluents Derived from in situ Oil Shale Processing,” in Water Problems Associated with Coal Conversion and Shale Oil Production ,Second Pacific Chemical Engineering Congress, Vol. II, American Institute of Chemical Engineers, New York (1977).Google Scholar
  117. 116.
    D. S. Farrier, L. W. Harrington, and R. E. Poulson, “Integrated Compliance and Control Technology Research Activities for in situ Fossil Fuel Processing Experiments,” LETC/RI-79/6. Tech. Info Center, U.S. Department of Energy, September (1979).Google Scholar
  118. 117.
    D. S. Farrier, J. E. Virgona, T. E. Phillips, and R. E. Poulson, “Environmental Research for in situ Oil Shale Processing,” Eleventh Oil Shale Symp. Proc. ,James H. Gary, editor, April 12–14 (Colo. School of Mines Press, Golden, Colorado, 1978).Google Scholar
  119. 118.
    J. P. Fox, D. S. Farrier, and R. E. Poulson, “Chemical Characterization and Analytical Considerations for an in situ Oil Shale Process Water,” LETC/RI-78/7. Tech. Info Center, U.S. Dept. Energy, November (1978).Google Scholar
  120. 119.
    A. D. Anderson, M. E. Lebsack, C. M. DeGraeve, D. S. Farrier, and H. L. Bergman, “Toxicity of an in situ Oil Shale Process Water to Rainbow Trout and Fathead Minnows,” Arch. Environ. Contain. Toxicol. 9, 171–179 (1980).CrossRefGoogle Scholar
  121. 120.
    A. Goldstein, L. Aronow, and S. M. Kaiman, Principles of Drug Action (John Wiley and Sons, New York, 1974).Google Scholar
  122. 121.
    M. Meselson and K. Russell, “Comparisons of Carcinogenic and Mutagenic Patency,” in H. Hiatt, J. Watson, and J. Winsten, editors, Origins of Human Cancer ,Cold Spring Harbor Symp., pp. 1473–1481 (1977).Google Scholar
  123. 122.
    P. Brookes, “On the Interaction of Carcinogens with DNA,” Biochem. Pharm. 20, 999 (1971).CrossRefGoogle Scholar
  124. 123.
    M. J. Cookson, P. Sims, and P. L. Grover, “Mutagenicity of Epoxides of Polycyclic Hydrocarbons Correlates with Carcinogenicity of Parent Hydrocarbons,” Nature New Biol. 234, 186 (1971).Google Scholar
  125. 124.
    B. N. Ames, “Identifying Environmental Chemicals Causing Mutations and Cancer,” Science 204, 587–593 (1979).CrossRefGoogle Scholar
  126. 125.
    J. McCann and B. N. Ames, “The Salmonella/Microsome Mutagenicity Test: Predictive Value for Animal Carcinogenicity,” in H. Hiatt, J. Watson, and J. A. Winsten, editors, Origins of Human Cancer ,Cold Spring Harbor Symp. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 1431–1450, New York (1977).Google Scholar
  127. 126.
    J. A. Miller and E. C. Miller, “The Metabolic Activation of Carcinogenic Aromatic Amines and Amides,” Prog. Exp. Tumor Res. 11, 273 (1969).Google Scholar
  128. 127.
    A. Pullman and B. Pullman, “Electronic Structure and Carcinogenic Activity of Aromatic Molecules. New Development,” Adv. Cancer Res. 3, 117 (1955).CrossRefGoogle Scholar
  129. 128.
    A. Pullman, “The Theory of Chemical Carcinogenesis and the Problem of Hydrocarbon-Protein Interactions,” in Biopolymers ,Symposia No. 1, John Wiley & Sons, Inc., New York, (1964), pp. 47–65.Google Scholar
  130. 129.
    E. Boyland, “Polycyclic Hydrocarbons,” Brit. Med. Bull. 20, 121 (1964).Google Scholar
  131. 130.
    V. T. Oliverio and C. Heidelberger, “The Interaction of Carcinogenic Hydrocarbons with Tissues. V. Some Structural Requirements for Binding of 1,2,5,6-dibenzanthracene,” Cancer Res. 18, 1094 (1958).Google Scholar
  132. 131.
    E. Cavalieri and M. Calvin, “Molecular Characteristics of Some Carcinogenic Hydrocarbons,” Proc. Natl. Acad. Sci. USA 68, 1251 (1971).CrossRefGoogle Scholar
  133. 132.
    H. Remmer, H. Greim, and J. B. S. Chenkman, in Methods in Enzymology ,R. W. Estabrook and M. E. Pullman, editors, Vol. X (Academic Press, New York, 1969).Google Scholar
  134. 133.
    I. Berenblum and P. Shubik, “A New Quantitative Approach to the Study of the Stages of Chemical Carcinogenesis in the Mouse’s Skin,” Brit. J. Cancer 12, 383 (1948).Google Scholar
  135. 134.
    W. R. Bryan and M. B. Shimkin, “Quantitative Analysis of Dose-Response Data Obtained with Three Carcinogenic Hydrocarbons in Strain C3H Male Mice,” J. Nat. Cancer Inst. 3, 503 (1943).Google Scholar
  136. 135.
    C. Peraino, R. J. M. Fry, E. Staffeldt, and J. P. Christopher, “Comparative Enhancing Effects of Phenobarbital, Amobarbital, Diphenylhydantoin and Dichlorodiphenyltrichloroethane on 2-Acetylaminofluorene-Induced Hepatic Tumorigenesis in the Rat,” Cancer Res. 35, 2884–2890 (1975).Google Scholar
  137. 136.
    C. S. Lange, “Observations on Some Tumors Found in Two Species of Planaria-Dugesia etrusca and D. ilvana,” J. Embryol. Exp. Morphol. 15, 125–130 (1966).Google Scholar
  138. 137.
    J. Foster, “Induction of Neoplasma in Planarians with Carcinogens,” Cancer Res. 23, 300–303 (1963).Google Scholar
  139. 138.
    J. Foster, “Malformations and Lethal Growths in Planarians Treated with Carcinogens,” Natl. Cancer Inst. Monograph 31, 683–691 (1969).Google Scholar
  140. 139.
    H. Kalter, “Correlation between Teratogenic and Mutagenic Effects of Chemicals in Mammals,” in Chemical Mutagens: Principles and Methods for their Detection ,A. Hollaender, editor (Plenum Press, New York, 1971).Google Scholar
  141. 140.
    J. A. DiPaolo and P. Kotin, “Teratogenesis Oncogenesis: A Study of Possible Relationships,” Arch. Pathol 81, 3 (1966).Google Scholar
  142. 141.
    R. L. Baldwin and M. R. Wells, “Effect of DDT on NADH-Cytochrome b5 Reductase Activity in the Freshwater Planarian, Phagocata veiata,” Bull. Environ. Contam. Toxicol. 428–430 (1978).Google Scholar
  143. 142.
    J. Phillips, M. Wells, and C. Chandler, “Metabolism of DDT by the Freshwater Planarian, Phagocata velata,” Bull. Environ. Contam. Toxicol. 12, 355–358 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Jay Boyd Best
    • 1
  1. 1.Colorado State UniversityFort CollinsUSA

Personalised recommendations