Einstein Nonlocality, Space-Time Structure, and Thermodynamics

  • H. D. Zeh


The problem of a possible connection between the different arrows of time observed in physical phenomena has recently gained interest,1-3 but has still to be considered as open. Moreover, the arrow most important for our everyday life—the thermodynamic one—is plagued by ambiguities in the statistical definition of entropy, which apparently has to be based on some observer-related concept of “coarse-graining” or “relevance”.3,4 A feature common to all useful relevance concepts (formally expressed by idempotent operators in the space of phase-space densities or density matrices) is some kind of locality required if entropy is to be approximately additive,
$$ S\; = \;\int {\;{{\rm{d}}_3}{\rm{rs}}\left( {\rm{r}} \right)}$$
Additivity would be lacking in a pure ensemble definition of entropy
$$ {{\rm{S}}_{\rm{e}}}\; = \; - \int {{\rm{dp}}\;{\rm{dq}}\;\rho \left( {{\rm{p,q}}} \right)} \;\ln \;\rho \left( {{\rm{p,q}}} \right)$$
since ρ(p,q) necessarily contains correlations between different particles even over astronomical distances. They are usually explained as caused by interactions in the past. In particular, the additivity (or locality) of entropy neglects macroscopic correlations which are very relevant though of little numerical contribution.


Black Hole Quantum Correlation Cosmic Censorship Future Singularity White Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    P. C. W. Davies, The Physics of Time Asymmetry (University of California Press, 1977).Google Scholar
  2. 2.
    R. Penrose, in General Relativity ,S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1979), p. 581.Google Scholar
  3. 3.
    H. D. Zeh, Found. Phys. 9, 803 (1979).CrossRefGoogle Scholar
  4. 4.
    R. Zwanzig, in Boulder Lectures in Theoretical Physics ,Vol. 3 (1960), p. 106.Google Scholar
  5. 5.
    H. Everett III, Rev. Mod. Phys. 29, 454 (1957).CrossRefGoogle Scholar
  6. 6.
    H. D. Zeh, Epist. Lett. 49.0, 26, 21 (1980).Google Scholar
  7. 7.
    Ref. 2, p. 585.Google Scholar
  8. 8.
    H. D. Zeh, Found. Phys. 1, 69 (1970).CrossRefGoogle Scholar
  9. 9.
    O. Kübler and H. D. Zeh, Ann. Phys. (N.Y.) 76, 405 (1973)CrossRefGoogle Scholar
  10. H. D. Zeh, Found. Phys. 3, 109 (1973).CrossRefGoogle Scholar
  11. 10.
    S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).CrossRefGoogle Scholar
  12. 11.
    P. C. W. Davies, J. Phys. A 8, 609 (1975)CrossRefGoogle Scholar
  13. 11a.
    W. Unruh, Phys. Rev. D 14, 870 (1976).CrossRefGoogle Scholar
  14. 12.
    J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).CrossRefGoogle Scholar
  15. 13.
    R. Penrose, in Confrontation of Cosmological Theories with Observational Data ,M. S. Lougain, editor (Reidel, Boston, 1974).Google Scholar
  16. 14.
    T. Gold, editor, The Nature of Time (Cornell U.P., Ithaca, New York, 1967).Google Scholar
  17. 15.
    W. Rindler, Mon. Not. R. Astron. Soc. 116, 663 (1956)Google Scholar
  18. S. Weinberg, Phys. Rev. Lett. 36, 294 (1976).CrossRefGoogle Scholar
  19. 16.
    J. F. Clauser and A. Shimony, Rep. Progr. Phys. 41, 1881 (1978).CrossRefGoogle Scholar
  20. 17.
    S. W. Hawking, Phys. Rev. D 13, 191 (1976).CrossRefGoogle Scholar
  21. 18.
    H. D. Zeh, Found. Phys. 5, 371 (1975).CrossRefGoogle Scholar
  22. 19.
    J. A. Wheeler, Frontiers of Time ,Enrico Fermi School of Physics (Varenna, 1977), course 72.Google Scholar
  23. 20.
    R. M. Wald, Phys. Rev. D 21, 2742 (1980).CrossRefGoogle Scholar
  24. 21.
    D. N. Page, Phys. Rev. Lett. 44, 301 (1980).CrossRefGoogle Scholar
  25. 22.
    P. C. W. Davies, Quantum Gravity 2 ,C. J. Isham et al., eds. (Claredon Press, Oxford, 1981), p. 183.Google Scholar
  26. 23.
    R. M. Wald, Quantum Gravity 2, C. J. Isham et al., eds. (Clarendon Press, Oxford, 1981), p. 224.Google Scholar
  27. 24.
    R. Penrose, Quantum Gravity 2 ,C. J. Isham et al., eds. (Clarendon Press, Oxford, 1981), p.245.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • H. D. Zeh
    • 1
  1. 1.Universität HeidelbergHeidelbergGFR

Personalised recommendations