Stochastic Interpretation of Relativistic Quantum Equations

  • N. Cufaro-Petroni
  • J.-P. Vigier


Recent discussions on the Einstein-Podolsky-Rosen paradox1 have shown that quantum mechanics implies spacelike correlations between two linear polarizers which measure the rate of coincidence between the relative orientations of pairs of photons emitted in the S state. If a forthcoming crucial experiment of Aspect2 confirms this then the only possible “causal” (i.e., which preserves the fundamental fact that no individual particle can leave the light cone) way out of the resulting contradiction between relativity and the quantum theory of measurement seems to lie in the direction of an extension of the stochastic interpretations of quantum mechanics in terms of subquantum random fluctuations resulting from the action of a stochastic “hidden” invariant thermostat. Indeed these models (a) deduce the form of the quantum waves from the physical assumption that the stochastic jumps occur at the velocity of light; (b) interpret the preceding superluminal interaction in terms of superluminal propagation of a “quantum potential”3 which is not carried by individual particles but results from phaselike collective motions carried by the said thermostat.


Rest Frame Lorentz Transformation Fluid Element Quantum Potential Relativistic Generalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    A. Einstein, B. Podolski, and N. Rosen, Phys. Rev. 47, 777, (1935).CrossRefGoogle Scholar
  2. 2.
    A. Aspect, Phys. Rev. Lett. 14D, 1944, (1976).Google Scholar
  3. 3.
    J. -P. Vigier, Lett. Nuovo Cimento 24, 258, 265, (1979).CrossRefGoogle Scholar
  4. 4.
    P. A. M. Dirac, Nature 168, 906, (1951).CrossRefGoogle Scholar
  5. 5.
    N. Cufaro-Petroni and J. -P. Vigier, Int. J. Theoi. Phys. 18, 807, (1979).CrossRefGoogle Scholar
  6. 6.
    A. Garuccio and J. -P. Vigier, Found. Phys. 10, 797 (1980).CrossRefGoogle Scholar
  7. 7.
    N. Cufaro -Petroni and J. -P. Vigier, Lett. Nuovo Cimento 25, 151 (1979).CrossRefGoogle Scholar
  8. 8.
    N. Cufaro -Petroni and J. -P. Vigier, Lett. Nuovo Cimento 26, 149 (1979).CrossRefGoogle Scholar
  9. 9.
    N. Cufaro -Petroni, A. Garuccio, F. Selleri, and J. -P. Vigier, C. R. Acad. Sci. Paris 290B, 111 (1980).Google Scholar
  10. 10.
    D. Bohm and J. -P. Vigier, Phys. Rev. 96, 208 (1954); 109, 1882 (1958).CrossRefGoogle Scholar
  11. 11.
    L. de Broglie, La theimodynamique de la particule isolèe (Gauthier-Villars, Paris, 1964).Google Scholar
  12. 12.
    W. Lehr and J. Park, J. Math. Phys. 18 1235, (1977).CrossRefGoogle Scholar
  13. 13.
    Ya. P. Terletski and J. -P. Vigier, Sov. Phys.-JETP 13, 356 (1961).Google Scholar
  14. 14.
    F. Halbwachs, J. -M. Souriau, and J. P. Vigier, J. Phys. Rad. 22, 26 (1961).CrossRefGoogle Scholar
  15. 15.
    C. Fenech, M. Moles, and J. -P. Vigier, Lett. Nuovo Cimento 24, 56 (1979).CrossRefGoogle Scholar
  16. 16.
    K. P. Sinha, C. Sivaram, and E. C. G. Sudarshan, Found. Phys. 6, 65, 717 (1976)CrossRefGoogle Scholar
  17. 16a.
    K. P. Sinha and E. C. G. Sudarshan, Found. Phys. 8, 823 (1978).CrossRefGoogle Scholar
  18. 17.
    L. de la Peña-Auerbach and A. M. Cetto, Phys. Rev. D 3, 795 (1971).CrossRefGoogle Scholar
  19. 18.
    T. Marshall, Proc. R. Soc. London 276A, 475 (1963).Google Scholar
  20. 19.
    N. Cufaro -Petroni and J. -P. Vigier, Phys. Lett 73A, 289 (1979).Google Scholar
  21. 20.
    L. de la Peña-Auerbach, J. Math. Phys. 12, 453 (1971).CrossRefGoogle Scholar
  22. 21.
    F. Guerra and P. Ruggiero, Lett. Nuovo Cimento 23, 529 (1978).CrossRefGoogle Scholar
  23. 22.
    F. Halbwachs, Thé orie relativiste des fluides à spin (Gauthier-Villars, Paris, 1960).Google Scholar
  24. 23.
    T. Marshall, Proc. Camhr. Phil. Soc. 61, 537 (1965).CrossRefGoogle Scholar
  25. 24.
    M. Flato, G. Rideau, and J. -P. Vigier, Nucl. Phys. 61, 250 (1965).CrossRefGoogle Scholar
  26. 25.
    L. de la Peña-Auerbach and A. M. Cetto, Found. Phys. 5, 355 (1975).CrossRefGoogle Scholar
  27. 26.
    J. -P. Vigier, C. R. Acad. Sci. Paris 266, 598 (1968).Google Scholar
  28. 27.
    A. Einstein, Investigations on the Theory of Brownian Movement (Dover, New York, 1956).Google Scholar
  29. 28.
    V. J. Lee, Found. Phys. 10, 77 (1980).CrossRefGoogle Scholar
  30. 29.
    R. Dugas, La thèorie physique au sens de Boltzmann (Griffon, Neuchatel, 1959).Google Scholar
  31. 30.
    R. C. Tolman, Theory of the Relativity of Motion (University of California Press, Berkeley 1918)Google Scholar
  32. 30a.
    R. C. Tolman, Relativity Thermodynamics and Cosmology (Oxford U.P., Oxford, 1935).Google Scholar
  33. 31.
    C. Eckart, Phys. Rev. 58, 919 (1940).CrossRefGoogle Scholar
  34. 32.
    L. de Broglie, C. R. Acad. Sci. Paris 253, 1078 (1961).Google Scholar
  35. 33.
    E. Nelson, Phys. Rev. 150, 1079 (1966).CrossRefGoogle Scholar
  36. 34.
    E. Cartan, The Theory of Spinors (Hermann, Paris, 1966).Google Scholar
  37. 35.
    W. Pauli, Theory of Relativity (Pergamon Press, London, 1958).Google Scholar
  38. 36.
    P. Hillion and J. -P. Vigier, Nucl. Phys. 16, 360 (1960).CrossRefGoogle Scholar
  39. 37.
    R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).CrossRefGoogle Scholar
  40. 38.
    J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).Google Scholar
  41. 39.
    J. V. Weyssenhoff and A. Raabe, Acta Phys. Pol 9, 7 (1947).Google Scholar
  42. 40.
    R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).CrossRefGoogle Scholar
  43. 41.
    J. -P. Vigier, Lett. Nuovo Cimento 29, 467 (1980).CrossRefGoogle Scholar
  44. 42.
    E. E. Fitchard, Found. Phys. 9, 525 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • N. Cufaro-Petroni
    • 1
  • J.-P. Vigier
    • 2
  1. 1.Istituto di FisicaUniversità di BariBariItaly
  2. 2.Institut Henri PoincaréParisFrance

Personalised recommendations