Advertisement

The Knots of Quantum Thermodynamics

  • James L. Park
  • Ralph F. SimmonsJr.

Abstract

Several years ago, in the course of intense discussions with one of us concerning research problems of mutual interest, our colleague Wolfgang Yourgrau repeatedly employed the colorful term “knots”—perhaps an allusion to the story of Gordius of Phrygia—to denote challenging fundamental dilemmas in the conceptual fabric of physical theory. The galaxy of foundations problems he investigated during his remarkably productive life included, among many other interests, topics in quantal, statistical, and thermal physics. Issues both old and new which arise in efforts to unify these sciences surely qualify as excellent specimens of Professor Yourgrau’s knots in natural philosophy. Hence, to honor his memory, we offer an essay on the knots of quantum thermodynamics. In order to focus mainly upon what Yourgrau used to call “tough science” as opposed to historiographic or metalinguistic analysis, we shall not dwell on the epistemological aspects but proceed immediately to the mathematical foundations of our subject.

Keywords

Composite System Density Operator Energy Eigenstate Reduce Density Operator Canonical State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    A. S. Eddington, The Nature of the Physical World (Cambridge U.P., Cambridge, 1928), p. 74.Google Scholar
  2. 2.
    H. Margenau and J. L. Park, Found. Phys. 3, 19 (1973).CrossRefGoogle Scholar
  3. 3.
    J. L. Park and H. Margenau, Chap. 5 in Perspectives in Quantum Theory ,W. Yourgrau and A. van der Merwe, editors (MIT Press, Cambridge, Massachusetts, 1971).Google Scholar
  4. 4.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton U.P., Princeton, New Jersey, 1955).Google Scholar
  5. 5.
    R. Baierlein, Atoms and Information Theory (W. H. Freeman, San Francisco, 1971).Google Scholar
  6. 6.
    B. K. Skagerstam, Stat. Phys. 12, 449 (1975).CrossRefGoogle Scholar
  7. 7.
    G. N. Hatsopoulos and E. P. Gyftopoulos, Found. Phys. 6, 15 (1976).CrossRefGoogle Scholar
  8. 8.
    G. N. Hatsopoulos and E. P. Gyftopoulos, Found. Phys. 6, 127 (1976).CrossRefGoogle Scholar
  9. 9.
    G. N. Hatsopoulos and E. P. Gyftopoulos, Found. Phys. 6, 439 (1976).CrossRefGoogle Scholar
  10. 10.
    G. N. Hatsopoulos and E. P. Gyftopoulos, Found. Phys. 6, 561 (1976).CrossRefGoogle Scholar
  11. 11.
    M. B. Ruskai, Ann. Inst. Henri Poincaré 19, 357 (1973).Google Scholar
  12. 12.
    K. Gottfried, Quantum Mechanics Volume I: Fundamentals (W. A. Benjamin, Reading, Massachusetts, 1966), p. 233.Google Scholar
  13. 13.
    R. Lenk, Brownian Motion and Spin Relaxation (Elsevier, New York, 1977), p. 28.Google Scholar
  14. 14.
    E. T. Jaynes, Phys. Rev. 106, 620 (1957).CrossRefGoogle Scholar
  15. 15.
    E. T. Jaynes, Phys. Rev. 108, 171 (1957).CrossRefGoogle Scholar
  16. 16.
    E. T. Jaynes, Am. J. Phys. 33, 391 (1965).CrossRefGoogle Scholar
  17. 17.
    A. Katz, Principles of Statistical Mechanics (W. H. Freeman, San Francisco, 1967).Google Scholar
  18. 18.
    V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976).CrossRefGoogle Scholar
  19. 19.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976).CrossRefGoogle Scholar
  20. 20.
    R. S. Ingarden and A. Kossakowski, Ann. Phys. (N.Y.) 89, 451 (1975).CrossRefGoogle Scholar
  21. 21.
    J. M. Blatt, Prog. Theor. Phys. 22, 745 (1959).CrossRefGoogle Scholar
  22. 22.
    B. Gal-Or, editor, Modern Developments in Thermodynamics (Wiley, New York, 1974).Google Scholar
  23. 23.
    E. C. Percival, J. Math. Phys. 2, 235 (1961).CrossRefGoogle Scholar
  24. 24.
    R. Jancel, Foundations of Classical and Quantum Statistical Mechanics (Pergamon, New York, 1969).Google Scholar
  25. 25.
    D. Ruelle, Statistical Mechanics Rigorous Results (W. A. Benjamin, New York, 1969).Google Scholar
  26. 26.
    I. Prigogine, C. George, F. Henin, and L. Rosenfeld, Chem. Scripta 1973, 4.Google Scholar
  27. 27.
    I. E. Farquhar, Ergodic Theory in Statistical Mechanics (Interscience, London, 1964).Google Scholar
  28. 28.
    A. Landé, New Foundations of Quantum Mechanics (University Press, Cambridge, Massachusetts, 1965).Google Scholar
  29. 29.
    R. Peierls, Surprises in Theoretical Physics (Princeton U.P., Princeton, New Jersey, 1979), p. 73.Google Scholar
  30. 30.
    A. Landé, New Foundations of Quantum Mechanics (University Press, Cambridge, Massachusetts, 1965), p. 75.Google Scholar
  31. 31.
    J. Mehra and E. C. G. Sudarshan, Nuovo Cimento 11, 215 (1972).CrossRefGoogle Scholar
  32. 32.
    J. L. Park and W. Band, Found. Phys. 7, 813 (1977).CrossRefGoogle Scholar
  33. 33.
    W. Band and J. L. Park, Found. Phys. 8, 45 (1978).CrossRefGoogle Scholar
  34. 34.
    J. L. Park and W. Band, Found. Phys. 8, 239 (1978).CrossRefGoogle Scholar
  35. 35.
    A. Kossakowski, Bull. Acad. Polon. Sci. Math. 20, 1021 (1972).Google Scholar
  36. 36.
    A. Kossakowski, Bull. Acad. Polon. Sci. Math. 21, 649 (1973).Google Scholar
  37. 37.
    A. Kossakowski, Rep. Math. Phys. 3, 247 (1972).CrossRefGoogle Scholar
  38. 38.
    E. B. Davies, Commun. Math. Phys. 39, 91 (1974).CrossRefGoogle Scholar
  39. 39.
    R. F. Simmons and J. L. Park, Found. Phys. 11, 297 (1981).CrossRefGoogle Scholar
  40. 40.
    K. Yosida, Functional Analysis ,4th ed. (Springer-Verlag, New York, 1974), p. 246.Google Scholar
  41. 41.
    J. L. Park and W. Band, Found. Phys. 1, 211 (1971).CrossRefGoogle Scholar
  42. 42.
    W. Band and J. L. Park, Found. Phys. 1, 339 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • James L. Park
    • 1
  • Ralph F. SimmonsJr.
    • 1
  1. 1.Department of PhysicsWashington State UniversityPullmanUSA

Personalised recommendations