The construction of a formalism for the description of the dynamical properties of many-body systems which is consistent with special relativity, in the framework of classical or quantum theory, is still far from complete. Dime’s proposal,1 in 1949, of Hamiltonian-type theories, developed2,3 into an action-at-a-distance theory with the Lorentz group canonically represented. Currie, Jordan, and Sudarshan,4 however, showed that when the canonical coordinates are taken as the physical coordinates of point particles and their world lines are Lorentz invariant, the only possible dynamics is that of free particles. The history of these developments, and an invaluable collection of reprinted papers, has been provided by Kerner.4 Rohrlich and King5,6 have developed a Hamiltonian theory in which constraint equations control the masses of individual particles and also have the role of generating the evolution of the system.7 For N-body systems, the requirements of compatibility imply the existence of N-body forces (corresponding to the potential functions appearing in the constraint equations).


Wave Packet Free Particle Wave Operator World Line Interaction Picture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).CrossRefGoogle Scholar
  2. 2.
    B. Bakamjian and L. H. Thomas, Phys. Rev. 92, 1300 (1953).CrossRefGoogle Scholar
  3. 3.
    L. L. Foldy, Phys. Rev. 122, 275 (1961).CrossRefGoogle Scholar
  4. 4.
    E. H. Kerner, editor, The Theory of Action-at-a-Distance in Relativistic Particle Dynamics (Gordon and Breach, New York, 1972).Google Scholar
  5. 5.
    F. Rohrlich, Ann. Phys. (N.Y.) 117, 292 (1979).CrossRefGoogle Scholar
  6. 6.
    M. King and F. Rohrlich, Ann. Phys. (N.Y.) 130, 350 (1980).CrossRefGoogle Scholar
  7. 7.
    F. Rohrlich, Phys. Rev. D 23, 1305 (1981)CrossRefGoogle Scholar
  8. I. T. Todorov, Comm. JINR F2-10125, Dubna (1976)Google Scholar
  9. V. V. Molotkov and I. T. Todorov, “Gauge Dependence of World Lines and Invariance of the S-Matrix in Relativistic Classical Mechanics,” Int. Rep. Ic/80/ 101, Trieste (1980)Google Scholar
  10. I. T. Todorov, “Constraint Hamiltonian Approach to Relativistic Point Particle Dynamics I,” Lectures at ICTP, Trieste, 1980. For recent articles on this topic, see the Proceedings of the Barcelona Workshop ,“Relativistic Action-at-a-Distance. Classical and Quantum Aspects,” June (1981)Google Scholar
  11. F. Rohrlich, “Evolution and Covariance in Constraint Dynamics,” SLAC-PUB-2737, Stanford (1981)Google Scholar
  12. L. P. Horwitz and F. Rohrlich, Phys. Rev. D. 24, 1528 (1981).CrossRefGoogle Scholar
  13. 8.
    E. C. G. Stueckelberg, Helv. Phys. Acta 14 372, 588 (1941).Google Scholar
  14. 9.
    L. P. Horwitz and C. Piron, Helv. Phys. Acta 46, 316 (1973).Google Scholar
  15. 10.
    R. P. Feynman, Phys. Rev. 80, 440 (1950) (App. A).CrossRefGoogle Scholar
  16. 11.
    L. P. Horwitz, Y. Lavie, and A. Softer, in Proceedings of the VIII Colloquium on Group Theoretical Methods in Physics, Ann. Israel Phys. Soc. 3 (1980).Google Scholar
  17. 12.
    L. P. Horwitz and Y. Lavie, Phys. Rev. D (in press).Google Scholar
  18. 13.
    L. P. Horwitz, C. Piron, and F. Reuse, Helv. Phys. Acta 48, 546 (1975).Google Scholar
  19. 14.
    C. Piron and F. Reuse, Helv. Phys. Acta 51, 146 (1978).Google Scholar
  20. 15.
    F. Reuse, Found. Phys. 9, 865 (1979).CrossRefGoogle Scholar
  21. 16.
    J. R. Fanchi and R. E. Collins, Found. Phys. 8, 851 (1978).CrossRefGoogle Scholar
  22. 17.
    R. E. Collins and J. R. Fanchi, Nuovo Cimento 48A, 314 (1978).Google Scholar
  23. 18.
    L. P. Horwitz, C. Piron, and W. C. Shieve, XIII IUPAP Conf. on Stat. Phys., ed. D. Cabib, C. Kuper and I. Riess, Ann. Israel Phys. Soc. 2 (1978); and to be published.Google Scholar
  24. 19.
    L. P. Horwitz and Y. Rabin, Nuovo Cimento Lett. 17, 501 (1976).CrossRefGoogle Scholar
  25. 20.
    T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).CrossRefGoogle Scholar
  26. 21.
    W. O. Amrein, Ph. A. Martin, and B. Misra, Helv. Phys. Acta 43, 313 (1970)Google Scholar
  27. 21a.
    C. Dollard, J. Math. Phys. 5, 792 (1964).CrossRefGoogle Scholar
  28. 22.
    R. G. Newton, Scattering Theory of Particles and Waves (McGraw Hill, New York, 1966)Google Scholar
  29. 22a.
    J. P. Taylor, Scattering Theory (John Wiley and Sons, New York, 1972).Google Scholar
  30. 23.
    L. P. Horwitz and A. Soffer, Helv. Phys. Acta ,to be published.Google Scholar
  31. 24.
    An alternative proof can be constructed using methods of L. Hörmander, Math. Z. 146, 69 (1976) [see also M. Reed and B. Simon, Methods of Modern Mathematical Physics III (Academic Press, New York and London, 1979)J.CrossRefGoogle Scholar
  32. 25.
    J. H. Cooke, Phys. Rev. 166, 1293 (1968).CrossRefGoogle Scholar
  33. 26.
    J. L. Cook, Aust. J. Phys. 25, 117 (1972).Google Scholar
  34. 27.
    F. Rohrlich, Phys. Rev. 50, 666 (1972).Google Scholar
  35. 28.
    P. M. Pearle, Phys. Rev. D 1, 979 (1970).CrossRefGoogle Scholar
  36. 29.
    A. Komar, Phys. Rev. D 18, 1881, 1887, 3617 (1978).CrossRefGoogle Scholar
  37. 30.
    E. C. G. Stueckelberg, Helv. Phys. Acta 15, 23 (1942).Google Scholar
  38. 31.
    I wish to thank Fritz Rohrlich for clarifying this connection.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • L. P. Horwitz
    • 1
  1. 1.Department of Physics and AstronomyTel Aviv UniversityRamat AvivIsrael

Personalised recommendations