Advertisement

Statistical Physics of Carriers in Heavily Doped Semiconductors

  • Victor I. Fistul’
Part of the Monographs in Semiconductor Physics book series (MOSEPH, volume 1)

Abstract

Distribution — Function Concept. In a system of N particles there are some whose coordinates lie within the intervals
$$x = x \pm \Delta x,\,\,\,\,\,y = y \pm \Delta y,\,\,\,\,\,z = z \pm \Delta z$$
(2.2.1)
and whose momentum components are, respectively,
$$p_x = p_x \pm \Delta p_x ,\,\,\,\,\,p_y = p_y \pm \Delta p_y ,\,\,\,\,\,p_z = p_z \pm \Delta p_z .$$
(2.1.2)
If the number of such particles is ΔN, they represent a fraction ΔN/N of the total number of particles. The fraction of such particles will increase or decrease proportionally to the variation of the intervals Δx, Δy, Δz, and Δpx, Δpy, Δpz. The coefficient of proportionality may be a function of coordinates and momenta, as well as of the time t :
$$\frac{{\Delta N}}{N} = f\left( {x,y,z,p_x ,p_y ,p_z ,t} \right)\Delta x\,\Delta y\,\Delta z\,\Delta p_x \,\Delta p_y \,\Delta p_z .$$
(2.1.3)
Since ΔxΔyΔz = ΔV is an element of volume in the coordinate space, ΔpxΔpyΔpz = Δω is an element of volume in the momentum space, and ΔVΔω = Δγ is an element of volume in the phase space, it follows that
$$\frac{{\Delta N}}{N} = f\Delta \gamma .$$

Keywords

Fermi Level Dirac Distribution Neutrality Equation Neutrality Equa Universal Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    L. D. Landau and E. M. Lifshits, Statistical Physics [in Russian], Fizmatgiz, 1964.Google Scholar
  2. 2.
    M. A. Leontovich, Statistical Physics [in Russian], Gostekhizdat, 1944.Google Scholar
  3. 3.
    J. E. Mayer and M. G. Mayer, Statistical Mechanics, Wiley, New York, 1940.MATHGoogle Scholar
  4. 4.
    J. W. Gibbs, Elementary Principles in Statistical Mechanics, Dover, New York, 1902.MATHGoogle Scholar
  5. 5.
    A. G. Samoilovich, Thermodynamics and Statistical Physics [in Russian], Gostekhizdat, 1953.Google Scholar
  6. 6.
    V. G. Levich, Introduction to Statistical Physics [in Russian], Gostekhizdat, 1950.Google Scholar
  7. 7.
    C. Hilsum and A. C. Rose-Innes, Semiconducting III—V Compounds, Pergamon Press, Oxford, 1961.MATHGoogle Scholar
  8. 8.
    R. A. Smith, Semiconductors, Cambridge University Press, 1961.Google Scholar
  9. 9.
    P. T. Landsberg, Proc. Phys. Soc. (London), A65:604 (1952).ADSGoogle Scholar
  10. 10.
    A. G. Samoilovich, DAN UkrSSR, No. 3, p. 174 (1954).Google Scholar
  11. 11.
    P. Debye and E. M. Conwell, Phys. Rev., 93:693 (1954).ADSCrossRefGoogle Scholar
  12. 12.
    G. L. Pearson and J. Bardeen, Phys. Rev., 75:865 (1949).ADSCrossRefGoogle Scholar
  13. 13.
    K. Lehovec and H. Kedesday, J. Appl. Phys., 22:65 (1961).ADSCrossRefGoogle Scholar
  14. 14.
    W. Shockley, Electrons and Holes in Semiconductors, Van Nostrand, New York, 1950.Google Scholar
  15. 15.
    J. S. Blakemore, Electr. Commun., 29:2 (1952).Google Scholar
  16. 16.
    E. Moser, Zeits. Angew. Math. Phys., Vol. 4, No. 6 (1953).Google Scholar
  17. 17.
    L. L. Korenblit and T. G. Shraifel’d, ZhTF, 25:1182 (1955).Google Scholar
  18. 18.
    V. L. Bonch-Bruevich, FTT (collection of papers), 2:177 (1959).Google Scholar
  19. 19.
    I. P. Zvyagin, FTT, 5:581 (1963).Google Scholar
  20. 20.
    V. L. Bonch-Bruevich, FTT, 4:2660 (1962).Google Scholar
  21. 21.
    R. B. Dingle, Appl. Sci. Research, B6:225 (1957).MathSciNetCrossRefGoogle Scholar
  22. 22.
    P. Rhodes, Proc. Phys. Soc. (London), A204:396 (1950).MathSciNetADSGoogle Scholar
  23. 23.
    J. McDougall and E. S. Stoner, Trans. Roy. Soc. (London), A237:67 (1939).ADSGoogle Scholar
  24. 24.
    A. C. Beer, M. N. Chase, and R. E. Choquard, Helv. Phys. Acta, 28:529 (1955).MathSciNetMATHGoogle Scholar
  25. 25.
    J. S. Blakemore, Semiconductor Statistics, Pergamon Press, Oxford, 1962.MATHGoogle Scholar
  26. 26.
    E. Jahnke and F. Emde, Tables of Functions, Dover, New York, 1945.MATHGoogle Scholar

Copyright information

© Plenum Press 1969

Authors and Affiliations

  • Victor I. Fistul’
    • 1
  1. 1.Institute for Fine Chemical TechnologyAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations