Skip to main content

Energy Spectrum of Electrons in Heavily Doped Semiconductors

  • Chapter
Book cover Heavily Doped Semiconductors

Part of the book series: Monographs in Semiconductor Physics ((MOSEPH,volume 1))

  • 371 Accesses

Abstract

Schrödinger’s Equation. In an isolated atom, such as hydrogen, only the valence electron and the nucleus interact. Therefore, Schrödinger’s equation, which expresses essentially the law of conservation of energy, has the following simple form:

$$\frac{{\hbar ^2 }}{{2m}}\frac{{d^2 \psi \left( r \right)}}{{dr^2 }} + V_0 \left( r \right)\psi \left( r \right) = E\psi \left( r \right).$$
(1.1.1)

The first term on the left-hand side of this equation represents the kinetic energy of the interaction between the electron and the nucleus and the second term represents the potential energy. The sum of these energies is equal to the total energy of the system Eψ(r). The solution of Eq. (1.1.1) yields plane waves of the type

$$\psi \left( r \right) = e^{ \pm ikr} $$
(1.1.2)

where k is the wave vector of the electron, equal to k = p/h, where p is the electron momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. F. Bloch, Z. Physik, 52:555 (1928).

    Article  ADS  MATH  Google Scholar 

  2. É. I. Adirovich, Some Problems in the Theory of Luminescence of Crystals [in Russian], Gostekhizdat, 1956.

    Google Scholar 

  3. N. B. Hannay (ed.), Semiconductors, 1959.

    Google Scholar 

  4. T. O. Woodruff, Solid State Physics, Vol. 4 (1957).

    Google Scholar 

  5. F. Herman, Phys. Rev., 93:1214 (1954).

    Article  ADS  MATH  Google Scholar 

  6. F. Herman, Phys. Rev., 95:847 (1954).

    Article  ADS  Google Scholar 

  7. F. Herman, Proc. IRE, 43:1703 (1955).

    Article  Google Scholar 

  8. B. Lax and J. Mavroides, Solid State Phys., 11:261 (1960).

    Article  Google Scholar 

  9. B. Lax, UFN, 70(1):111 (1960).

    Google Scholar 

  10. R. K. Willardson, T. C. Harman, and A. C. Beer, Phys. Rev., 96:1512 (1954).

    Article  ADS  Google Scholar 

  11. G. Delia Pergola and D. Sette, Phys. Rev., 104:598 (1956).

    Article  ADS  Google Scholar 

  12. H. P. Furth and R. W. Waniek, Phys. Rev., 104:343 (1956).

    Article  ADS  Google Scholar 

  13. G. G. Macfarlaneet al. Phys. Rev., 108:1377 (1957).

    Article  ADS  Google Scholar 

  14. G. G. Macfarlaneet al. Phys. Rev., 111:1245 (1958).

    Article  ADS  Google Scholar 

  15. F. Herman, J. Electronics, 1:103 (1955).

    Google Scholar 

  16. F. Herman, J. Phys. Chem. Solids, 8:380 (1959).

    ADS  Google Scholar 

  17. C. Hilsum and A. C. Rose-Innes, Semiconducting III—V Compounds, Pergamon Press, Oxford, 1961.

    MATH  Google Scholar 

  18. Selected Constants Relative to Semiconductors, Pergamon Press, New York, 1961.

    Google Scholar 

  19. A. I. Ansel’m, Introduction to the Theory of Semiconductors [in Russian], Fizmatgiz, 1963.

    Google Scholar 

  20. D. I. Blokhintsev, Fundamentals of Quantum Mechanics [in Russian], “Vysshaya shkola,” 1961.

    Google Scholar 

  21. C. H. Kittel and A. H. Mitchell, Phys. Rev., 96:1488 (1954).

    Article  ADS  Google Scholar 

  22. J. M. Luttinger and W. Kohn, Phys. Rev., 97:863 (1955).

    Article  ADS  Google Scholar 

  23. J. M. Luttinger and W. Kohn, Phys. Rev., 96:802 (1954).

    Article  ADS  Google Scholar 

  24. W. Kohn and J. M. Luttinger, Phys. Rev., 97:1721 (1955).

    Article  ADS  Google Scholar 

  25. W. Kohn and J. M. Luttinger, Phys. Rev., 98:915 (1955).

    Article  ADS  Google Scholar 

  26. W. Kohn and D. Schechter, Phys. Rev., 99:1903 (1955).

    Article  ADS  Google Scholar 

  27. E. Burstein, G. S. Picus, and N. Sclar, Report on the Photoconductivity Conference, New York, November, 1954.

    Google Scholar 

  28. G. Busch and H. Labhart, Helv. Phys. Acta, 14:463 (1946).

    Google Scholar 

  29. N. F. Mott and W. D. Twose, UFN, 79(4):69l (1963).

    Google Scholar 

  30. P. Debye and E. M. Conwell, Phys. Rev., 93:693 (1954).

    Article  ADS  Google Scholar 

  31. G. L. Pearson and J. Bardeen, Phys. Rev., 75:865 (1949).

    Article  ADS  Google Scholar 

  32. W. Baltensperger, Phil. Mag., 44:1355 (1953).

    MATH  Google Scholar 

  33. M. Lax and J. C. Phillips, Phys. Rev., 110:41 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. V. L. Bonch-Bruevich, FTT, 4:2660 (1962).

    Google Scholar 

  35. V. L. Bonch-Bruevich, FTT, 5:1852 (1963).

    Google Scholar 

  36. T. P. Brody, J. Appl. Phys., 33:100 (1962).

    Article  ADS  Google Scholar 

  37. H. M. James and A. S. Ginzberg, J. Phys. Chem., 57:840 (1953).

    Article  Google Scholar 

  38. E. M. Conwell, Phys. Rev., 103:51 (1956).

    Article  ADS  Google Scholar 

  39. H. L. Frisch and S. P. Lloyd, Phys. Rev., 120:1175 (1960).

    Article  ADS  MATH  Google Scholar 

  40. V. L. Bonch-Bruevich and A. G. Mironov, FTT, 3:3009 (1961).

    Google Scholar 

  41. R. H. Parmenter, Phys. Rev., 97:587 (1955).

    Article  ADS  MATH  Google Scholar 

  42. V. L. Bonch-Bruevich, FTT (collection of papers), 2:177 (1959).

    Google Scholar 

  43. P. Aigrain, Physica, 20:978 (1954).

    Article  ADS  Google Scholar 

  44. V. L. Bonch-Bruevich and Sh. M. Kogan, Ann. Phys., 9:125 (1960).

    Article  ADS  MATH  Google Scholar 

  45. L. V. Keldysh and G. P. Proshko, FTT, 5:3378 (1963).

    Google Scholar 

  46. F. N. Horn, Phys. Rev., 97:1521 (1955).

    Article  ADS  Google Scholar 

  47. G. B. Dubrovskii, Dissertation for Candidate’s Degree [in Russian], Leningrad, 1963.

    Google Scholar 

  48. J. I. Pankove, Phys. Rev. Letters, 4:31 (1960).

    ADS  Google Scholar 

  49. J. I. Pankove, Phys. Rev. Letters, 4:454 (1960).

    Article  ADS  Google Scholar 

  50. C. Haas, Phys. Rev., 125:1965 (1962).

    Article  ADS  Google Scholar 

  51. J. I. Pankove and P. Aigrain, Phys. Rev., 126:956 (1962).

    Article  ADS  Google Scholar 

  52. G. B. Dubrovskii and B. K. Subashiev, FTT, 4:3018 (1962).

    Google Scholar 

  53. H. S. Sommers, Phys. Rev., 124:1101 (1961).

    Article  ADS  Google Scholar 

  54. F. Stern and R. M. Talley, Phys. Rev., 100:1638 (1955).

    Article  ADS  Google Scholar 

  55. F. Stern and J. R. Dixon, J. Appl. Phys., 30:268 (1959).

    Article  ADS  Google Scholar 

  56. V. Roberts and J. E. Quarrington, J. Electronics, 1:152 (1955).

    Google Scholar 

  57. R. Newman, Phys. Rev., 111:1518 (1958).

    Article  ADS  Google Scholar 

  58. S. W. Kurnick and J. M. Powell, Phys. Rev., 116:597 (1959).

    Article  ADS  Google Scholar 

  59. D. Long, Phys. Rev., 99:388 (1955).

    Article  ADS  Google Scholar 

  60. V. I. Fistul’ and A. M. Agaev, FTT, 7:3042 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Plenum Press

About this chapter

Cite this chapter

Fistul’, V.I. (1969). Energy Spectrum of Electrons in Heavily Doped Semiconductors. In: Heavily Doped Semiconductors. Monographs in Semiconductor Physics, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8821-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8821-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8823-4

  • Online ISBN: 978-1-4684-8821-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics