Energy Spectrum of Electrons in Heavily Doped Semiconductors

  • Victor I. Fistul’
Part of the Monographs in Semiconductor Physics book series (MOSEPH, volume 1)


Schrödinger’s Equation. In an isolated atom, such as hydrogen, only the valence electron and the nucleus interact. Therefore, Schrödinger’s equation, which expresses essentially the law of conservation of energy, has the following simple form:
$$\frac{{\hbar ^2 }}{{2m}}\frac{{d^2 \psi \left( r \right)}}{{dr^2 }} + V_0 \left( r \right)\psi \left( r \right) = E\psi \left( r \right).$$
The first term on the left-hand side of this equation represents the kinetic energy of the interaction between the electron and the nucleus and the second term represents the potential energy. The sum of these energies is equal to the total energy of the system Eψ(r). The solution of Eq. (1.1.1) yields plane waves of the type
$$\psi \left( r \right) = e^{ \pm ikr} $$
where k is the wave vector of the electron, equal to k = p/h, where p is the electron momentum.


Conduction Band Energy Spectrum Valence Band Band Structure Brillouin Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Bloch, Z. Physik, 52:555 (1928).ADSMATHCrossRefGoogle Scholar
  2. 2.
    É. I. Adirovich, Some Problems in the Theory of Luminescence of Crystals [in Russian], Gostekhizdat, 1956.Google Scholar
  3. 3.
    N. B. Hannay (ed.), Semiconductors, 1959.Google Scholar
  4. 4.
    T. O. Woodruff, Solid State Physics, Vol. 4 (1957).Google Scholar
  5. 5.
    F. Herman, Phys. Rev., 93:1214 (1954).ADSMATHCrossRefGoogle Scholar
  6. 6.
    F. Herman, Phys. Rev., 95:847 (1954).ADSCrossRefGoogle Scholar
  7. 7.
    F. Herman, Proc. IRE, 43:1703 (1955).CrossRefGoogle Scholar
  8. 8.
    B. Lax and J. Mavroides, Solid State Phys., 11:261 (1960).CrossRefGoogle Scholar
  9. 9.
    B. Lax, UFN, 70(1):111 (1960).Google Scholar
  10. 10.
    R. K. Willardson, T. C. Harman, and A. C. Beer, Phys. Rev., 96:1512 (1954).ADSCrossRefGoogle Scholar
  11. 11.
    G. Delia Pergola and D. Sette, Phys. Rev., 104:598 (1956).ADSCrossRefGoogle Scholar
  12. 12.
    H. P. Furth and R. W. Waniek, Phys. Rev., 104:343 (1956).ADSCrossRefGoogle Scholar
  13. 13.
    G. G. Macfarlaneet al. Phys. Rev., 108:1377 (1957).ADSCrossRefGoogle Scholar
  14. 14.
    G. G. Macfarlaneet al. Phys. Rev., 111:1245 (1958).ADSCrossRefGoogle Scholar
  15. 15.
    F. Herman, J. Electronics, 1:103 (1955).Google Scholar
  16. 16.
    F. Herman, J. Phys. Chem. Solids, 8:380 (1959).ADSGoogle Scholar
  17. 17.
    C. Hilsum and A. C. Rose-Innes, Semiconducting III—V Compounds, Pergamon Press, Oxford, 1961.MATHGoogle Scholar
  18. 18.
    Selected Constants Relative to Semiconductors, Pergamon Press, New York, 1961.Google Scholar
  19. 19.
    A. I. Ansel’m, Introduction to the Theory of Semiconductors [in Russian], Fizmatgiz, 1963.Google Scholar
  20. 20.
    D. I. Blokhintsev, Fundamentals of Quantum Mechanics [in Russian], “Vysshaya shkola,” 1961.Google Scholar
  21. 21.
    C. H. Kittel and A. H. Mitchell, Phys. Rev., 96:1488 (1954).ADSCrossRefGoogle Scholar
  22. 22.
    J. M. Luttinger and W. Kohn, Phys. Rev., 97:863 (1955).ADSCrossRefGoogle Scholar
  23. 23.
    J. M. Luttinger and W. Kohn, Phys. Rev., 96:802 (1954).ADSCrossRefGoogle Scholar
  24. 24.
    W. Kohn and J. M. Luttinger, Phys. Rev., 97:1721 (1955).ADSCrossRefGoogle Scholar
  25. 25.
    W. Kohn and J. M. Luttinger, Phys. Rev., 98:915 (1955).ADSCrossRefGoogle Scholar
  26. 26.
    W. Kohn and D. Schechter, Phys. Rev., 99:1903 (1955).ADSCrossRefGoogle Scholar
  27. 27.
    E. Burstein, G. S. Picus, and N. Sclar, Report on the Photoconductivity Conference, New York, November, 1954.Google Scholar
  28. 28.
    G. Busch and H. Labhart, Helv. Phys. Acta, 14:463 (1946).Google Scholar
  29. 29.
    N. F. Mott and W. D. Twose, UFN, 79(4):69l (1963).Google Scholar
  30. 30.
    P. Debye and E. M. Conwell, Phys. Rev., 93:693 (1954).ADSCrossRefGoogle Scholar
  31. 31.
    G. L. Pearson and J. Bardeen, Phys. Rev., 75:865 (1949).ADSCrossRefGoogle Scholar
  32. 32.
    W. Baltensperger, Phil. Mag., 44:1355 (1953).MATHGoogle Scholar
  33. 33.
    M. Lax and J. C. Phillips, Phys. Rev., 110:41 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    V. L. Bonch-Bruevich, FTT, 4:2660 (1962).Google Scholar
  35. 35.
    V. L. Bonch-Bruevich, FTT, 5:1852 (1963).Google Scholar
  36. 36.
    T. P. Brody, J. Appl. Phys., 33:100 (1962).ADSCrossRefGoogle Scholar
  37. 37.
    H. M. James and A. S. Ginzberg, J. Phys. Chem., 57:840 (1953).CrossRefGoogle Scholar
  38. 38.
    E. M. Conwell, Phys. Rev., 103:51 (1956).ADSCrossRefGoogle Scholar
  39. 39.
    H. L. Frisch and S. P. Lloyd, Phys. Rev., 120:1175 (1960).ADSMATHCrossRefGoogle Scholar
  40. 40.
    V. L. Bonch-Bruevich and A. G. Mironov, FTT, 3:3009 (1961).Google Scholar
  41. 41.
    R. H. Parmenter, Phys. Rev., 97:587 (1955).ADSMATHCrossRefGoogle Scholar
  42. 42.
    V. L. Bonch-Bruevich, FTT (collection of papers), 2:177 (1959).Google Scholar
  43. 43.
    P. Aigrain, Physica, 20:978 (1954).ADSCrossRefGoogle Scholar
  44. 44.
    V. L. Bonch-Bruevich and Sh. M. Kogan, Ann. Phys., 9:125 (1960).ADSMATHCrossRefGoogle Scholar
  45. 45.
    L. V. Keldysh and G. P. Proshko, FTT, 5:3378 (1963).Google Scholar
  46. 46.
    F. N. Horn, Phys. Rev., 97:1521 (1955).ADSCrossRefGoogle Scholar
  47. 47.
    G. B. Dubrovskii, Dissertation for Candidate’s Degree [in Russian], Leningrad, 1963.Google Scholar
  48. 48.
    J. I. Pankove, Phys. Rev. Letters, 4:31 (1960).ADSGoogle Scholar
  49. 49.
    J. I. Pankove, Phys. Rev. Letters, 4:454 (1960).ADSCrossRefGoogle Scholar
  50. 50.
    C. Haas, Phys. Rev., 125:1965 (1962).ADSCrossRefGoogle Scholar
  51. 51.
    J. I. Pankove and P. Aigrain, Phys. Rev., 126:956 (1962).ADSCrossRefGoogle Scholar
  52. 52.
    G. B. Dubrovskii and B. K. Subashiev, FTT, 4:3018 (1962).Google Scholar
  53. 53.
    H. S. Sommers, Phys. Rev., 124:1101 (1961).ADSCrossRefGoogle Scholar
  54. 54.
    F. Stern and R. M. Talley, Phys. Rev., 100:1638 (1955).ADSCrossRefGoogle Scholar
  55. 55.
    F. Stern and J. R. Dixon, J. Appl. Phys., 30:268 (1959).ADSCrossRefGoogle Scholar
  56. 56.
    V. Roberts and J. E. Quarrington, J. Electronics, 1:152 (1955).Google Scholar
  57. 57.
    R. Newman, Phys. Rev., 111:1518 (1958).ADSCrossRefGoogle Scholar
  58. 58.
    S. W. Kurnick and J. M. Powell, Phys. Rev., 116:597 (1959).ADSCrossRefGoogle Scholar
  59. 59.
    D. Long, Phys. Rev., 99:388 (1955).ADSCrossRefGoogle Scholar
  60. 60.
    V. I. Fistul’ and A. M. Agaev, FTT, 7:3042 (1965).Google Scholar

Copyright information

© Plenum Press 1969

Authors and Affiliations

  • Victor I. Fistul’
    • 1
  1. 1.Institute for Fine Chemical TechnologyAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations