Advertisement

Method for Calculating Surface Rayleigh Waves in a Vertically Inhomogeneous Half-Space

  • M. G. Neigauz
  • G. V. Shkadinskaya

Abstract

As is well-known [1], displacements in Rayleigh waves are expressed in terms of the eigenvalues and eigenfunctions of the following boundary value problem.

Keywords

Group Velocity Seismic Wave Rayleigh Wave Independent Solution Love Waves 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Andrianova, Z. S., V. I. Keilis-Borok, A. L. Levshin, and M. G. Neigauz (1965), Surface Love Waves, Moscow, Nauka [English translation: Seismic Love Waves, New York, Consultants Bureau, 1967].Google Scholar
  2. 2.
    Gel’fand, I. M., and O. V. Lokutsievskii (1962), “The pursuit method for solving difference equations,” in: (S. K. Godunov and V. S. Ryaben’kii, eds.), Introduction to the Theory of Difference Schemes, Moscow, Fizmatgiz.Google Scholar
  3. 3.
    Lidskii, V. B., and M. G. Neigauz (1962), “Pursuit method in the case of a second-order self-adjoint system,” Zh. vychisl. matem. i matem. fiz., 2(1):161–165.Google Scholar
  4. 4.
    Godunov, S. K., and V. S. Ryaben’kii (1962), Introduction to the Theory of Difference Schemes, Moscow, Fizmatgiz.Google Scholar
  5. 5.
    Keilis-Borok, V. I., M. G. Neigauz, and G. V. Shkadinskaya (1965), “Application of the theory of eigenfunctions to the calculation of surface wave velocities,” Revs. Geophys., 3:105–110.CrossRefGoogle Scholar

Copyright information

© Consultants Bureau, New York 1972

Authors and Affiliations

  • M. G. Neigauz
  • G. V. Shkadinskaya

There are no affiliations available

Personalised recommendations