Effects of Sound on Endocrine Function and Electrolyte Excretion

  • Mary F. Lockett


Loud sounds, intense light, immobilization, anxiety, forced exercise, surgery, cold and many other stressful agents increase the secretion of corticotrophin (ACTH) from the adenohypophysis. In each case, the mechanism by which the secretion of ACTH is accelerated is neurohumoral (1) and is mediated through the central nervous system (2). The resulting elevation in plasma concentrations of ACTH causes an increase in the secretion of adrenal corticoids; the additional corticoid secreted is that characteristic of the particular species under stress (4). Thus, loud sounds raise plasma concentrations of corticosterone in the rat (5) and of 17-hydroxycorticosterone in man (6) and in monkeys (7). High concentrations of ACTH also increase the rate of secretion of aldosterone (8).


Adrenal Medulla Endocrine Function ACTH Secretion Audiogenic Seizure ACTH Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Groot, J., and G.W. Harris, 1950. Hypothalamic control of the anterior pituitary and blood lymphocytes. Journal of Physiology (London) 111:335–346.Google Scholar
  2. 2.
    McCann, S.M., 1953. Effect of hypothalamic lesions on the adrenal cortical response to stress in the rat. American Journal of Physiology 175:13–20.PubMedGoogle Scholar
  3. 3.
    Fortier, C., 1963. Hypothalamic control of the anterior pituitary. In Comparative Endocrinology, U.S. Von Euler and H. Heller (Eds.) Chap.1, Vol.1. Academic Press, New York, pp. 1–24.Google Scholar
  4. 4.
    Bush, I.E., 1953. Species differences in adrenocortical secretion. Journal of Endocrinology 9:95–100.PubMedCrossRefGoogle Scholar
  5. 5.
    Henkin, R.I. and K.M. Knigge, 1963. Effect of sound on the pituitary adrenal axis. American Journal of Physiology 204:710–714.Google Scholar
  6. 6.
    Persky, H., R.R. Grinker, D.A. Hamburg, M. Sabshin, S.J. Korchin, H. Basowitz and J.A. Chevalier, 1956. Adrenal cortical function in anxious human subjects; plasma level and urinary excretion of hydrocortisone. Archives of Neurology and Psychiatry 76:549–558.PubMedGoogle Scholar
  7. 7.
    Mason, J.W., 1958. Plasma 17-hydroxycorticosteroid response to hypothalamic stimulation in the conscious rhesus monkey. Endocrinology 63:403–411.PubMedCrossRefGoogle Scholar
  8. 8.
    David, J.O., 1967. The regulation of aldosterone secretion. In The Adrenal Cortex A.B. Eisenstein (Ed.)pp. 203–247. Little, Brown, Boston.Google Scholar
  9. 9.
    Brodish, A. and C.N.H. Long, 1956. Changes in blood ACTH under various conditions studied by cross-circulation technique. Endocrinology, 59:666–676.PubMedCrossRefGoogle Scholar
  10. 10.
    Saffran, M. and A.V. Schally, 1955. The release of cortico-trophin by anterior pituitary tissue in vitro. Canadian Journal of Biochemistry and Physiology 33:408–415.PubMedCrossRefGoogle Scholar
  11. 11.
    Guillemin, R. and A.V. Schally, 1959. Re-evaluation of a technique of pituitary incubation in vitro as an assay for corticotrophin-releasing factor. Endocrinology 65:555–562.PubMedCrossRefGoogle Scholar
  12. 12.
    Guillemin, R., A.V. Schally, H.S. Lipscomb, R.N. Andersen and J.M. Long, 1962. On the presence in the hog hypothalamus of 8-corticotrophin-releasing factor, a — and 8-melanocyte stimulating hormones, adrenocorticotrophin, lysine-vasopressin and oxytocin. Endocrinology 70:471–477.PubMedCrossRefGoogle Scholar
  13. 13.
    Gemzell, C.A., D.C. Van Dyke, C.A. Tobias and M.M. Evans, 1951. Increase in the formation and secretion of ACTH following adrenalectomy. Endocrinology 49:325–336.PubMedCrossRefGoogle Scholar
  14. 14.
    Abelson, D. and D.N. Baron, 1952. The effect of cortisone acetate on adrenal ascorbic acid depletion following stress. Lancet 2:663–664.PubMedCrossRefGoogle Scholar
  15. 15.
    Forgacs, P. and L. Hajdu, 1953. Adrenocorticotrophic hormon (ACTH) elualasztas gatlasa cortisonnal. Kiserletes Orvostudomany 5:444–448.PubMedGoogle Scholar
  16. 16.
    Schwartz, N.B. and A. Kling, 1960. Stress-induced adrenal ascorbic acid depletion in the cat. Endocrinology 66:308–310.PubMedCrossRefGoogle Scholar
  17. 17.
    Smelik, P.C., 1963. Failure to inhibit corticotrophin secretion by experimentally induced increases in corticoid levels. Acta Endocrinologica 44:36–46.PubMedGoogle Scholar
  18. 18.
    Endroczi, E. and K. Lissak, 1961. The role of the rhinencephalon in the activation of the hypophyseo-adrenocorticogonad system and in the formation of emotional and sexual behaviour. Problemy Endokrinologii i Gormonoterapii. (Moscow) 4:18–25.Google Scholar
  19. 19.
    Endroczi, E. and K. Lissak, 1962. Interrelations between paleocortical activity and adrenocortical function. Acta Physiologica Academiae Scientiorum Hungaricae 21:257–263.Google Scholar
  20. 20.
    Porter, R.W. 1954. The central nervous system and stress induced eosinopenia. Recent Progress in Hormone Research 10:1–18.Google Scholar
  21. 21.
    Endroczi, E., K. Lissak, C. Szep and A. Tigyi, 1954. Examinations of the pituitary-adrenal-thyroid system after ablation of neocortical and rhinencephalic structures. Acta Physiologica Academiae Scientiorum Hungaricae 6:19–31.Google Scholar
  22. 22.
    Endroczi, E. and K. Lissak, 1960. The role of the mesencephalon, diencephalon, and archicortex in the activation and inhibition of the pituitary-adrenocortical system. Acta Physiologica Academiae Scientiorum Hungaricae 17:39–51.Google Scholar
  23. 23.
    Knigge, K.M., 1960. Neuroendocrine mechanisms influencing ACTH and TSH secretion and their role in cold acclimatization. Federation Proceedings 19:45–51.PubMedGoogle Scholar
  24. 24.
    Mason, J.W., 1959. Plasma 17-hydroxycorticosteroid levels during electrical stimulation of the amygdaloid complex in conscious monkeys. American Journal of Physiology. 196:44–48.PubMedGoogle Scholar
  25. 25.
    Mason, J.W., W.J.H. Nauta, J.V. Brady and J.A. Robinson, 1959. Limbic system influences on the pituitary-adrenal cortical system. Proceedings of the Endocrine Society 41:29.Google Scholar
  26. 26.
    Okinaka, S., H. Ibayashi, K. Motohashi, T. Fumita, S. Yoshida and N. Ohsawa, 1960. Effect of electrical stimulation of the limbic system on pituitary-adrenal function: posterior orbital surface. Endocrinology, 67:319–325.PubMedCrossRefGoogle Scholar
  27. 27.
    Mason, J.W., 1958. The central nervous system regulation of ACTH secretion. In Reticular Formation of the Brain, H.H. Jaspar, L.D. Proctor, A.S. Knighton, W.C. Noshaw and R.T. Costello. (Eds), Little, Brown, Boston, pp. 645–662.Google Scholar
  28. 28.
    Nauta, W.J.H. and H.G.J.M. Kuypers, 1958. Some ascending pathways in the brain stem reticular formation. In Reticular Formation of the Brain, H.H. Jaspar, L.D. Proctor, A.S. Knighton, W.C. Noshay and R. T. Costello. (Eds), Little, Brown, Boston, pp. 3–30.Google Scholar
  29. 29.
    Nauta, W.J.H., 1961. Limbic system and hypothalamus. Physiological Reviews 40:102–104.Google Scholar
  30. 30.
    Nauta, W.J.H., 1963. Central nervous organization and the endocrine motor system. In Advances in Neurology. A.V. Nalbandov. (Ed), University of Illinois Press, Urbana. pp. 5–21.Google Scholar
  31. 31.
    Medoff, H.S. and A.M. Bongiovanni, 1945. Audiogenic stimulation and blood pressure. American Journal of Physiology 143:300–305.Google Scholar
  32. 32.
    Farris, E.J., E.H. Yeakel and H.S. Medoff, 1945. Development of hypertension in emotional animals. American Journal of Physiology 144:331–333.Google Scholar
  33. 33.
    Smirk, F.R., 1949. Pathogenesis of essential hypertension. British Medical Journal 1:791–799.PubMedCrossRefGoogle Scholar
  34. 34.
    Rosecrans, J.A., N. Watzman and J.P. Buckley, 1966. The production of hypertension in male albino rats subjected to experimental stress. Biochemical Pharmacology 15:1707–1718.CrossRefGoogle Scholar
  35. 35.
    Vander, A.J., 1967. Control of renin release. Physiological Reviews 47:359–382.PubMedGoogle Scholar
  36. 36.
    Peart, W.S., 1965. The renin-angiotensin system. Pharmacological Reviews 17:143–182.PubMedGoogle Scholar
  37. 37.
    Rapp, J.P., 1969. Deoxycorticosterone production in adrenal regeneration hypertension, in vitro and in vivo comparison. Endocrinology, 84:1409–1420.PubMedCrossRefGoogle Scholar
  38. 38.
    Brown-Grant, K. and G. Perthes, 1960. The response of the thyroid gland of the guineapig to stress. Journal of Physiology (London) 151:40–50.Google Scholar
  39. 39.
    Brown-Grant, K., G.W. Harris and S. Reichlin, 1954. The effect of emotional and physical stress on thyroid activity in the rabbit. Journal of Physiology (London) 126:29–40.Google Scholar
  40. 40.
    Harris, G.W., 1955. Neural control of the pituitary gland. Arnold. London.Google Scholar
  41. 41.
    Brown-Grant, K., 1966. The control of TSH secretion. In The Pituitary Gland. G.W. Harris and B.T. Donovan (Eds). Vol. II, Butterworths, London, pp. 235–261.Google Scholar
  42. 42.
    Shipley, R.A. and F.H. MacIntyre, 1954. Effect of stress, TSH and ACTH on the level of hormonal I131 of serum. Journal of Clinical Endocrinology and Metabolism 14:309–317.PubMedCrossRefGoogle Scholar
  43. 43.
    Engstrom, W.W. and B. Markhardt, 1955. The effect of serious illness and surgical stress on the circulating thyroid hormone. Journal of Clinical Endocrinology and Metabolism 15:953–963.PubMedCrossRefGoogle Scholar
  44. 44.
    Lees, P. and M.F. Lockett, 1964. The influence of hypophysectomy and of adrenalectomy on the urinary changes induced by oxytocin in rats. Journal of Physiology (London) 171:403–410.Google Scholar
  45. 45.
    Ogle, C.W. and M.F. Lockett, 1966. The release of neurohypophyseal hormone by sound. Journal of Endocrinology 36: 281–290.PubMedCrossRefGoogle Scholar
  46. 46.
    Euler, U.S. von and I. Orwen, 1955. Preparation of extracts and organs for estimation of free and conjugated noradrenaline and adrenaline. Acta Physiologica Scandinavica 33:(Suppl. 118) 1–9.Google Scholar
  47. 47.
    Gaddum, J.H. and F. Lembeck, 1949. The assay of substances from the adrenal medulla. British Journal of Pharmacology and Chemotherapy 4:401–408.PubMedGoogle Scholar
  48. 48.
    Bisset, G.W., 1961. The assay of oxytocin and vasopressin in blood and the mechanism of inactivation of these hormones by thioglycollate. In Oxytocin, R. Caldeyro-Barcia and H. Heller (Eds) Pergamon Press, London, pp. 380–398.Google Scholar
  49. 49.
    Van Dongen, C.G. and R.L. Hays, 1966. A sensitive in vitro assay for oxytocin. Endocrinology 78:1–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Ogle, C.W., 1967. Low frequency sound and oxytocic activity of plasma, in rats. Nature (London) 214:1112–1113.CrossRefGoogle Scholar
  51. 51.
    Euler, U.S. von, R. Luft and T. Sundin, 1954. Excretion of urinary adrenaline in normals following intravenous infusion. Acta Physiologica Scandinavica 30:249–259.CrossRefGoogle Scholar
  52. 52.
    Ogle, C.W. and M.F. Lockett, 1968. The urinary changes induced in rats by high pitched sound (20 kycycles/sec) Journal of Endocrinology 42:253–260.PubMedCrossRefGoogle Scholar
  53. 53.
    Bisset, G.W., B.J. Clark and G.P. Lewis, 1967. The mechanism of the inhibitory action of adrenaline on the mammary gland. British Journal of Pharmacology and Chemotherapy 31:550–559.PubMedGoogle Scholar
  54. 54.
    Kleeman, C.R. and R.E. Cutler, 1963. The neurohypophysis. Annual Review of Physiology 25:385–432.PubMedCrossRefGoogle Scholar
  55. 55.
    Peeters, G. and R. Coussens, 1950. The influence of milking on the lactating cow. Archives Internationales de Pharmacodynamic et de Therapie 84:209–220.Google Scholar
  56. 56.
    Cross, B.A., 1951. Suckling antidiureses in rabbits. Journal of Physiology (London) 114:447–453.Google Scholar
  57. 57.
    Ginsburg, M. and M. W. Smith, 1959. The fate of oxytocin in male and female rats. British Journal of Pharmacology and Chemotherapy 14:327–333.PubMedGoogle Scholar
  58. 58.
    Lederis, K., 1961. Vasopressin and oxytocin in the mammalian hypothalamus. General and Comparative Endocrinology 1:80–89.PubMedCrossRefGoogle Scholar
  59. 59.
    Olivecrona, H., 1957. Paraventricular nucleus and pituitary gland. Acta Physiologica Scandinavica Suppl. 136:1–178.Google Scholar
  60. 60.
    Slotnick, B.M. and A.B. Rothballer, 1964. Vasopressin release following stimulation of limbic forebrain structures in the cat. Federation Proceedings 23:150.Google Scholar
  61. 61.
    Aulsebrook, L.H. and R.C. Holland, 1969. Central regulation of oxytocin release. American Journal of Physiology 216:818–829.PubMedGoogle Scholar
  62. 62.
    Aulsebrook, L.H. and R.C. Holland, 1969. Central inhibition of oxytocin release. American Journal of Physiology 216:830–842.PubMedGoogle Scholar
  63. 63.
    Cross, B.A., 1961. Neural control of oxytocin secretion. In Oxytocin R. Caldeyro-Barcia and H. Heller (Eds), Pergamon Press, London, pp. 24–47.Google Scholar
  64. 64.
    Zeman, W. and J.R.M. Innes, 1963. In Craigie’s Neuroanatomy of the Rat. New York Academic Press, pp. 61–77.Google Scholar
  65. 65.
    O’Connor, W.J. and E.B. Verney, 1942. The effect of removal of the posterior lobe of the pituitary on the inhibition of water diuresis by emotional stress. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences 31:393–408.Google Scholar
  66. 66.
    Duke, H.N. and M. Pickford, 1951. Observations on the action of acetylcholine and adrenaline on the hypothalamus. Journal of Physiology (London) 114:325–332.Google Scholar
  67. 67.
    Pickford, M., 1960. The release of oxytocin and vasopressin in Polypeptides which affect smooth muscle. M. Schachter (Ed.) Pergamon Press, London, p. 42.Google Scholar
  68. 68.
    Brauner, F., F. Brucke, F. Kaindl and A. Neumayer, 1951. Quantitative Bestimmungen uber die Sekretion des Nebennierenmarkes bei elektrischer Hypothalamus Reizung. Archives Internationales de Pharmacodynamie et de therapie 85:419–430.PubMedGoogle Scholar
  69. 69.
    Brucke, F., F. Kaindl and H. Mayer, 1952. Uber die Veranderung in der Zusammensetzung des Nebennierenmarkinkretes bei elektrischer Reizung des Hypothalamus. Archives Internationales de Pharmacodynamie et de therapie 88:407–412.PubMedGoogle Scholar
  70. 70.
    Grant, R., P. Lindgren, A. Rosen and Uonas B., 1958. The release of catechols from the adrenal medulla on activation of the sympathetic vasodilator nerves of the skeletal muscles in the cat, by hypothalamic stimulation. Acta Physiologica Scandinavica 43:135–154.PubMedCrossRefGoogle Scholar
  71. 71.
    Iremoto, T., 1955. Studies on the central mechanism for the adrenaline secretion — Accelerating mechanism for adrenaline secretion in the pons. Folia Endocrinologica Japonica 31:268–270.Google Scholar
  72. 72.
    Folkow, B. and U.S. von Euler, 1954. Selective activation of noradrenaline and adrenaline producing cells in the suprarenal gland of the cat by hypothalamic stimulation. Circulation Research 2:191–195.PubMedGoogle Scholar
  73. 73.
    Lehman, A. and R.G. Busnel, 1963. A study of the audiogenic seizure. In Acoustic Behavior of Animals. R.G. Busnel (Ed), Elsevier Publishing Company, pp. 244–262.Google Scholar
  74. 74.
    Wada, J.A. and T. Asakura, 1969. Susceptibility to audiogenic seizure induced by thiosemicarbazide. Experimental Neurology 24:19–37.PubMedCrossRefGoogle Scholar
  75. 75.
    Wada, J.A. and M. Ikada, 1966. The susceptibility to auditory stimuli of animals treated with methionine sulfoxime. Experimental Neurology 15:157–165.PubMedCrossRefGoogle Scholar
  76. 76.
    K. Schlesinger, R.C. Elston and W. Boggan, 1966. The genetics of sound induced seizure in inbred mice. Genetics 54:95–103.PubMedGoogle Scholar
  77. 77.
    Krushinski, L.V., 1959. Genetic investigations in experimental pathophysiology of higher nervous activity. Bulletin Moskov. Obstrch. Biol. 64:105–117 (Read in translated abstract only).Google Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Mary F. Lockett
    • 1
  1. 1.Department of PharmacologyThe University of Western AustraliaNedlandsAustralia

Personalised recommendations